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Model Predictive Control example: Microgrid frequency stabilization
System model

Classical State-Space system:

xt+1 = Axt +But +Gdt + w (1)
yt = Cxt + v (2)

Main state: Swing equation

d

dt
∆f(t) = − D

2H
∆f(t) +

1

2H
∆Pmech(t) (3)
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Model Predictive Control example: Microgrid frequency stabilization
Simulation: High available ramping flexibility
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Model Predictive Control example: Microgrid frequency stabilization
Simulation: Lower available ramping flexibility
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Model Predictive Control example: Microgrid frequency stabilization
Temporal Control Hierarchy with Indirect Control

EMS
Stochastic Program

Aggregator

1h 	

RD
Real–time re–dispatch

1-15 min 	

Direct Control
Fast dynamics

1-5s 	

Indirect Control
Uncertain price–responsiveness

60-600s 	

Basic control Prosumer

Microgrid Controller

6 DTU Compute Handling Uncertainty in Sector Coupled Systems using Dynamic Programming
and Model Predictive Control

11.9.2019



Model Predictive Control example: Microgrid frequency stabilization
Exemplary system responses
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Figure: Small uncertainty response
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Model Predictive Control example: Microgrid frequency stabilization
Simulation: Freq. stab. with uncertain consumption I
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Model Predictive Control example: Microgrid frequency stabilization
DC+IC

Actor (Deterministic) + Prosumer response (Uncertain)

Uncertainty should be compensated for post–realization and pro–realization
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Model Predictive Control example: Microgrid frequency stabilization
IC control objective

min
{pk+j}N−1

j=0

ΦIC =
1

2

N−1∑
j=0

||Ψ||2Q + ||∆pk+j ||2R (4)

s.t. x̂k+1|k = Ax̂k|k +Bpk (5)

x̂k+1+j|k = Ax̂k+j|k +Bpk+j (6)

j = 1, 2, . . . ,N− 1

ŷk+j|k = Cx̂k+j|k j = 1, 2 . . . , N (7)

pmin ≤ pk+j ≤ pmax (8)
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MPC with Active Learning under Model Uncertainty
Linear/Non–Linear system

Exemplary formulation

Mj :

{
xk+1 = f(xk, uk, θ, wk)

yk = h(xk, θk, vk)
(9)

Source of formulation: Heirung et al. 2018

Sources of uncertainties

• Structural uncertainty

• Parametric uncertainty
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MPC with Active Learning under Model Uncertainty
Hyperstate propagation (formalized description)

ζk|k−1 =

∫
p(zk|zk−1, uk−1) · ζk−1dzk−1 (10a)

ζk =
p(yk|zk) · ζk|k−1∫
p(yk|zk) · ζk|k−1dzk

(10b)

Where:
ζ Hyperstate

zT =
[
x θ

]T Augmented state vector
u System input
y System output
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MPC with Active Learning under Model Uncertainty
DP: General cost function

Jk(ζk, πk) = E[

N−1∑
j=k

lj(xj , uj) + lN (xN )] (11)
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MPC with Active Learning under Model Uncertainty
Bellman equation: Recursive problem solution

J?
k (ζk) = min

uk

Ek[lk(xk, uk) + J?
k+1(ζk+1)], k = 0, 1, . . . , N − 1 (12)
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Indirect Control with Active Learning
IC control objective + Active Learning

min
{pk+j}N−1

j=0

ΦIC =
1

2

N−1∑
j=0

||Ψ||2Q + ||∆pk+j ||2R (13)

s.t. x̂k+1|k = f(xk, uk, θk) (14)

x̂k+1+j|k = f(xk+j , uk+j , θk+j) (15)

j = 1, 2, . . . ,N− 1

pmin ≤ pk+j ≤ pmax (16)
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Indirect Control with Active Learning
Temporal Control Hierarchy
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But: Scope on fast systems
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EMPC with Active Learning
Economic objective function

min
{pk+j}N−1

j=0

ΦEMPC =
∑

k inN
pkuk + αvvk (17)

s.t. x̂k+1|k = f(xk, uk, θk) (18)

x̂k+1+j|k = f(xk+j , uk+j , θk+j) (19)

j = 1, 2, . . . ,N− 1

pmin ≤ pk+j ≤ pmax (20)
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EMPC with Active Learning
Temporal Control Hierarchy: Focus on slow prosumers
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EMPC with Active Learning
Temporal Control Hierarchy: Generalized prosumers
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Considered modeling tools
System Identification and uncertainty estimation

• Markov Chain Monte Carlo sampling

• see e.g. Stan

• Classical subspace identification techniques

• see e.g. Van Overschee and de Moor 1993

• Dynamic Mode Decomposition

• see e.g. Schmid 2010; Kutz, Fu, and Brunton 2015
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Closing notes
Closing notes I

Content:

• Starting point: MPC for aggregated Microgrid operation (Virtual Power Plant)

• Background: MPC with dual effect (Active Learning)

• Goal: Economic MPC considering the dual effect for slow sector coupling
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Closing notes
Closing notes II

Thank you for your attention.

Figure: This work has been supported by ENERGINET.DK under the project
microGRId positioning (uGrip) and the CITIES project.
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Appendix
Example

Figure: Solar heat injection station (small scale): Excess heat from solarthermal
collectors can be injected in the district heating network.
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Appendix
Reference paper on this regulator formulation

See as reference paper for all aspects on this matter shown below: Banis
et al. 2019; Banis et al. 2018. This publication is based on approaches
outlined in Pannocchia and Rawlings 2003.
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Appendix
System model

Classical State-Space system:

xt+1 = Axt +But +Gdt + w (21)
yt = Cxt + v (22)

Main state: Swing equation

d

dt
∆f(t) = − D

2H
∆f(t) +

1

2H
∆Pmech(t) (23)
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Appendix
Objective function

Stabilization problem T1

J∞,k = ||Φx(x̂k − x∞,k) + Γu(uk − u∞,k)||2 (24)

Dynamic Programming problem T2

JDO,k = ||uk − u?k−1 + γW∆u∆uk||2 (25)

Portfolio constitution T3

JC,k = (1− γ)Πk (26)
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Appendix
Objective function: Overview

min
u,k

J∞,k + JDO,k + JC,k (27)

s.t. Gkuk ≤ hk (28)
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Appendix
(T1) Residual estimation

Inferring input disturbance1

[
x̂k+1|k
d̂k+1|k

]
=

[
A Bd

0 I

] [
x̂k|k−1

d̂k|k−1

]
+

[
B
0

]
uk+[

L1

L2

]
(ym,k − Cx̂k|k−1 − Cdd̂k|k−1) (29)

1We optimize over deviations encompassing the positive and negative domain → Only first optimal input required
satisfactory, imposing these constraints for the whole sequence uk+N−1|k results in numerical issues.
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Appendix
(T1) Stabilizing gain

Solving for g∞2 using least-squares approximation:

M︷ ︸︸ ︷[
A− I B
C 0

] g∞︷ ︸︸ ︷[
gx,∞
gu,∞

]
=

[
Bd

0

]
(30)

g∞ ≈
[
Bd

0

]
M−1 (31)

2See Pannocchia and Rawlings 2003; Pannocchia and Rawlings 2001
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Appendix
(T1) Equilibrium point

[
x∞
u∞

]
= g∞d̂ (32)
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Appendix
(T2) Dynamic programming terms

Ensure offset-free control
→ Even when constraints are active on parts of the portfolio
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Appendix
(T3) Portfolio constitution

Πk = α||uk − uEMS,k||2W∆u
+

β( ||c̃kuk||2 + ||c̃∆,k(uk − uEMS,k)||2W∆u
) (33)

where: α+ β = 1
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Appendix
Constraints

General
Dynamic reformulation via supervisory system: considering additional system
knowledge

Gkuk ≤ hk (34)

Particularity: Ramp rate

Only the first optimal input in the sequence required binding1

∆umin ≤ u?k+1|k − u
?
k|k ≤ ∆umax (35)

36 DTU Compute Handling Uncertainty in Sector Coupled Systems using Dynamic Programming
and Model Predictive Control

11.9.2019


	Model Predictive Control example: Microgrid frequency stabilization
	Overview
	Temporal Control Hierarchy

	MPC with Active Learning under Model Uncertainty
	Model Uncertainties
	Bayesian recursion
	Dynamic Programming

	Indirect Control with Active Learning
	Augmented Objective
	Temporal Control Hierarchy

	EMPC with Active Learning
	Objective
	Temporal Control Hierarchy

	Considered modeling tools
	System Identification and uncertainty estimation


