

Marie Münster Professor MSO DTU Management

What is the benefit of sector coupling?

The aim of the FutureGas project is twofold:

- 1) In an energy system context to facilitate the integration of the gas system with the power system, the district heating system and the transportation sector taking into account possible synergies
- 2) To facilitate a cost-efficient uptake of renewable gases, hereby in the longer term substituting natural gas and fossil fuels

Creds to Mason Lester for model runs

Potential benefits

- Using variable renewable power sources to decarbonise other sectors
- Providing stability and storage to the power grid
- Utilising excess heat

4

Integrated energy systems

DTU Set Integrated energy systems

DTU

Integrated energy systems

Part I

– What is the value of the gas grid and Power to heat?

Balmorel

Input

Heat and electricity demand Fuel prices and emissions Efficiencies and costs Hourly distribution of demands and production from RE sources Capacities of existing plants and transmission Time aggregation

Output

Energy conversion Fuel consumption Electricity import/export Emissions Investments in plants and transmission lines Prices on traded energy Total costs

Modes

LP or MIP (e.g. economy of scale) Myopic investments or Rolling horizon

Assumptions

Economic rationality Perfect markets Perfect foresight within a year

Wiese, F. et. al. Balmorel open source energy system model. Energy Strategy Reviews, Vol. 20, 2018, p. 26-34.

Scenarios

- Model
 - Denmark, Germany, Sweden, and Norway
 - Includes individual heating and industry
 - Does not include transport sector
- Scenarios
 - Base Balmorel
 - No gas BALMOREL
 - No natural gas or biogas
 - No E to H BALMOREL
 - No electricity to heat i.e. no HP or ELC boilers

Biomass Costs and CO2 Constraint – Late Sprint

[€/GJ]	2030	2050
Straw	5.95	6.14
Wood chips	6.96	7.28
Wood pellets	9.03	9.26

DEA, Analyseforudsætninger

Change in Total System Costs - Denmark

Normalized

Total System Cost - Denmark

Danish Fuel Consumption

Conclusion

- Both PtH and the gas grid will add value to future energy systems of up to 340 MEUR/yr
- The gas grid provides the highest value in the short term
- PtH provides the highest value in the longer term
- With no PtH, we need more natural gas in 2030 and more biomass both in the short and the long term
- With no gas grid, we require more biomass and wind

Part II

– What is the value of power to fuels, hydrogen, and EVs?

Model characteristics

- -Year 2050
- -Fossil independent energy system
- -High biomass costs
- -Denmark, Germany, Sweden, and Norway
- Includes standard electricity and district heating demands (not other industry or individual heat)
- -Includes projected transport energy demands
 - Adapted from TIMES-DK results
- Based on Mason Lesters Masters Thesis Balmorel-Optiflow model

Scenarios

- Base
- No P to X
 - No P to X transport fuel technologies (electrofuels)
- No hydrogen
 - No direct use of hydrogen for transport
- No EVs
 - No electric vehicles

Limitations

- Only changes to transport sector i.e. no analysis in the use of hydrogen for industry, nor analysis of hydrogen for electricity storage
- Includes hydrogen storage technology for transport use only
- Hydrogen can be produced variably according to price signals and demands
- Fuel demands are assumed constant over the year

Energy Demands

- Electricity and District Heating Demands
 - 2050 Nordic Energy Technology Perspective
- Transport Fuel Demand
 - TIMES-DK results

Transport Fuel Demands

[PJ]	Base	No PtX	No H2	No EVs
Aviation Fuel	58	58	58	58
Maritime Fuel	10	10	10	10
Road Fuel	60	60	80	274
EV demand	56	56	56	0
H2 demand	10	10	0	15

Fuel Price, Potentials and CO2 cost

	Price [€/GJ]	Potential [PJ]
Natural Gas	4.89	∞
Coal	1.05	∞
Straw	6.8	54
Wood chips	7.9	41
Wood pellets	9.8	∞

Nordic Energy Technology Perspective 2016, IEA

Change in Danish System Costs

500 Consumption (0) 420 400 350 300 250 200 Straw - Domestic Wood Chips - Domestic 200 Wood Pellets - Imported 150 Biomass 100 50 0 No EVs Base No P-to-X No H2 Scenario

Biomass Consumption - 2050

Energy Consumption - 2050 Denmark

Conclusion

- EVs have the greatest value to the Danish energy system
- PtX and H2 have value but not as much since best e-fuels are using biomass for their carbon source
- Wood pellets are imported if no EVs are available and to a lesser extent with no PtX and no H2

Coming up: ETIP SNET WG1 White paper on sector coupling

- The white paper addresses the potential benefits of energy sector coupling: PtH, PtG, PtX, and EV's
- Work in progress:
 - Coordinated by DTU
 - International collaboration between leading researchers, industry and institutions in the field of energy sector coupling

The End

Questions or comments? maem@dtu.dk

https://orbit.dtu.dk/en/persons/marie-munster(48791cb0-5c40-4de1-8659-e6cfb586f16a).html

Extras

Energy Demand - Denmark

Change in Total System Costs

DTU Ħ

Normalized Total Danish Energy System Costs

1400 Base2030 [M€] 1200 1000 800 System Cost -600 400 200 0 NoEtoH NoGas Base NoEtoH NoGas Base 2030 2050

Total System Cost - Denmark