

5th International Conference On Smart Energy Systems

4th Generation District Heating, Electrification, Electrofuels and Energy Efficiency 10-11 September 2019 · Copenhagen

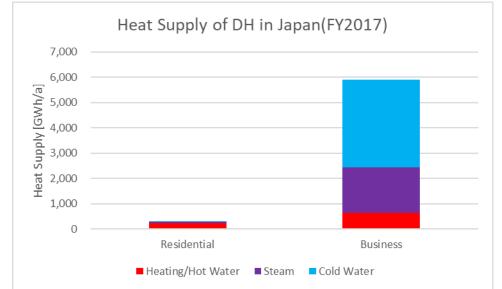
Current Status and Issues of Renewable Heating System towards 4DH in Japan

Sept. 11th 2019

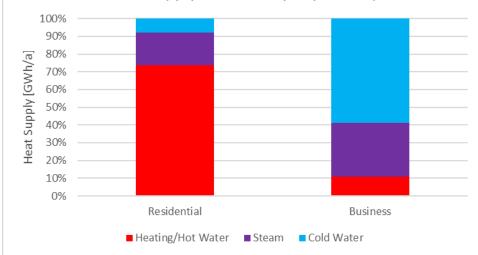
Institute for Sustainable energy policies Hironao MATSUBARA, Tetsunari IIDA

Institute for Sustainable Energy Policies(ISEP) <u>http://www.isep.or.jp/en</u>

- Current Status of Heat Supply by DH in Japan
- Comparison of DH indexes in EU and Japan
- Possibilities of renewable sources for DH in Japan
- Cases of DH using renewable in Japan
- Concluding Remarks

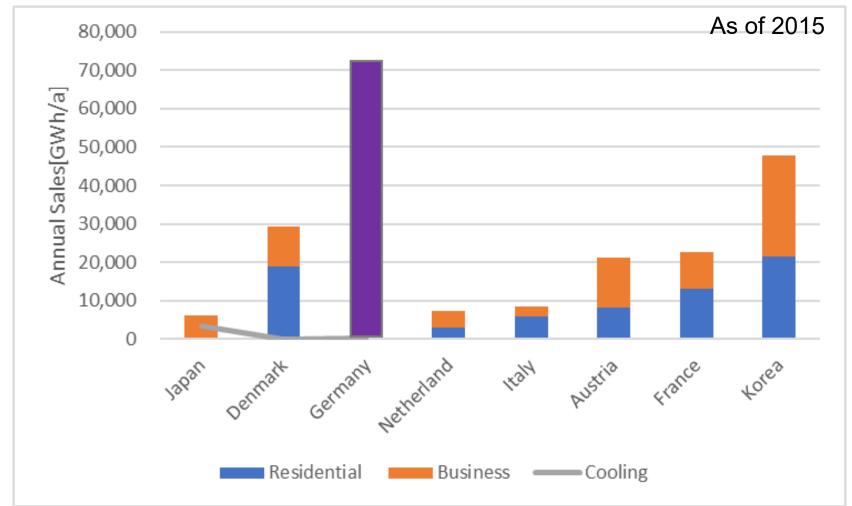

Market of District Heating and other energy business in Japan

- DH market is very small in comparison with gas and electricity in heating sector
- This is because;
 - ✓ historically, there has been absence of "heat policy" in Japan,
 - ✓ DH has been less importance in Japan's energy policy,
 - ✓ as a result, oil, gas and electricity industry has been dominant in Japan's heat market, and compete each other, which resulted in excluding renewable heat historically.


	Electricity Market	City Gas Market	LP Gas Market	District Heat Market
Share of Supply Area	100%	6%	94%	0.01%
Number of consumers	84 million	29 million	24 million	36,000
Size of market	18 Trillion JPY	5 Trillion JPY		0.14 Trillion JPY
Total No. of Employee	130,000	32,400		2500
Total Length of grid		259,000 km	None	646 km
Liberalization of Retail	FY2016	FY2017	Liberalized	FY2016
Notes	10 Big Utilities Over 600 retail company	About 200 retail companies	About 21,000 retail companies	76 Companies, 134 Regions (As of 2017)

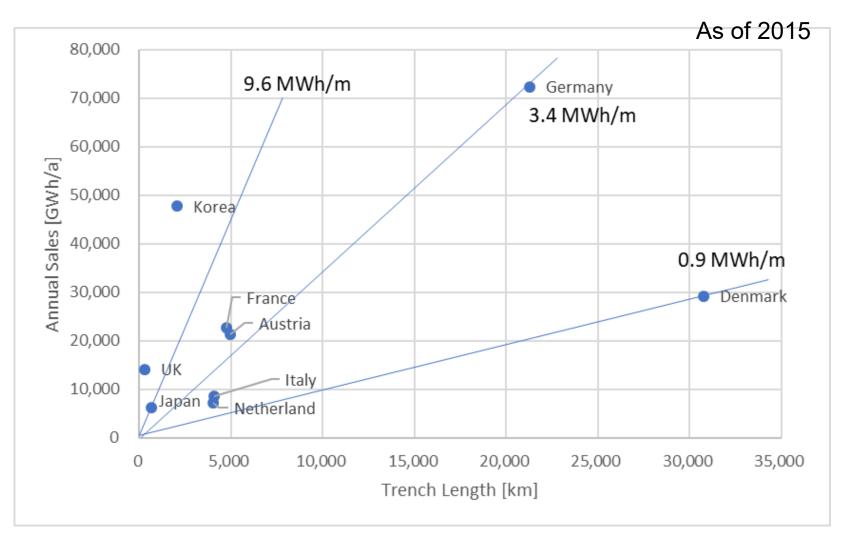
Heat Supply by DH in Japan as of 2017

	Unit	Heating/ Hot Water	Steam	Cold Water	Total	Share
Sales(Residential)	GWh/a	233	58	25	316	5.1%
Sales(Business)	GWh/a	645	1,792	3,470	5,907	94.9%
Sales(Total)	GWh/a	878	1,850	3,495	6,224	100%
Share of Sales	%	14.1%	29.7%	56.2%	100%	
Trench Length	km	232	206	208	646	
Linear heat density	MWh/m	3.8	9.0	16.8	9.6	


Heat Supply of DH in Japan(FY2017)

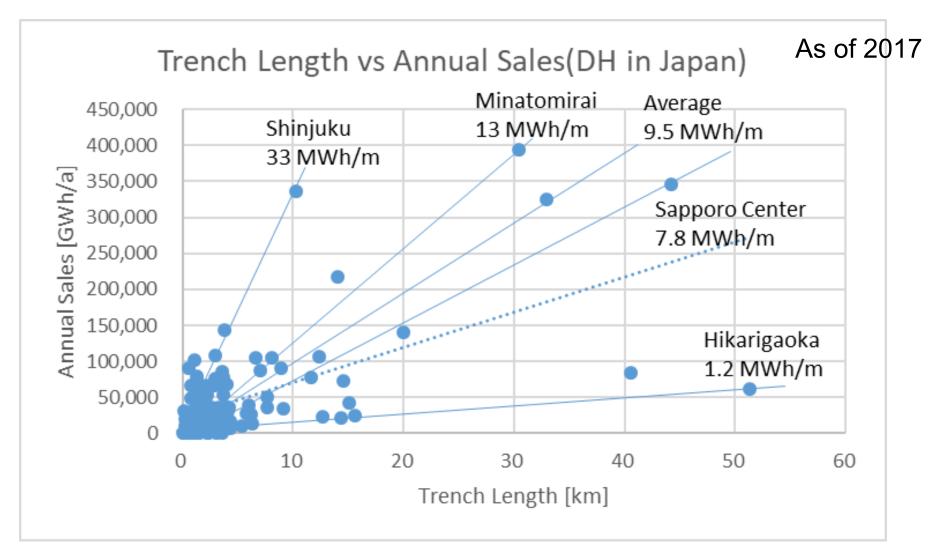
Source: JHSBA(Japan Heat Supply Business Association) data

Share of residential users of DH compared with EU and Japan

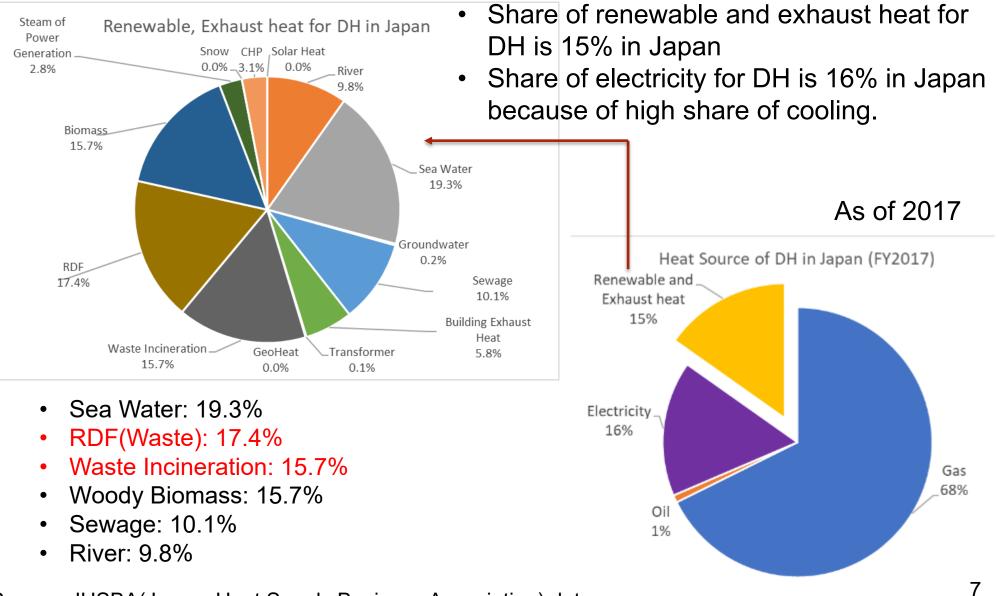

- Share of residential users of DH is very low(5%) in Japan
- Share of cooling of DH is very high (56%) in Japan

Source: Data from EuroHeat & Power Country by Country 2017 4

Comparison of DH system in EU and Japan

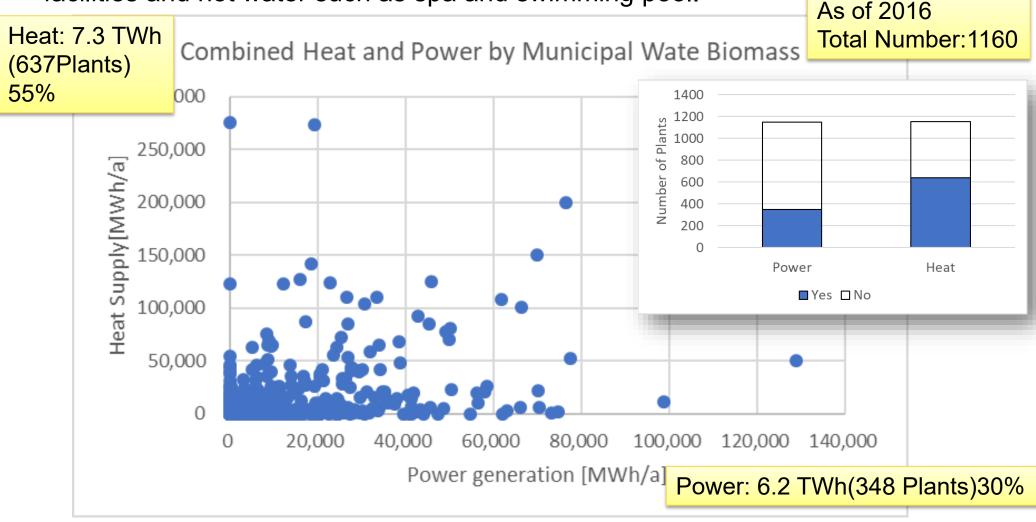

• Linear Heat Density of DH: Denmark: 0.9MWh/m, Japan:9.6MWh

Source: Data from EuroHeat & Power Country by Country 2017


Linear heat density of DH system in Japan

• Average of Linear Heat Density of DH in Japan: 9.5 MWh/m

Source: JHSBA(Japan Heat Supply Business Association) data


Heat Source of DH in Japan

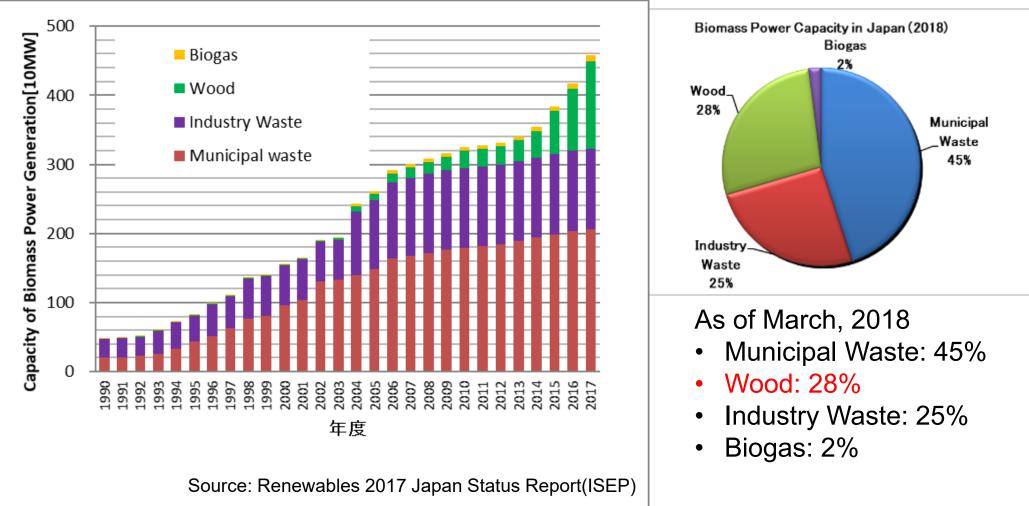
Source: JHSBA(Japan Heat Supply Business Association) data

Heat of Municipal Waste Incineration plants in Japan

 Heat of municipal waste incineration plants are utilized mainly for internal facilities and hot water such as spa and swimming pool.

Source: Data of Ministry of Environment 8

Case of DH: Tokyo Hikarigaoka housing complex Municipal Waste Incineration Heat


- The largest DH system for residential users(12,000) in Japan
- Linear heat density: 1.2 GWh/m/a(61TWh/a, 51km)
- Exhaust heat from Municipal waste incineration: 55°C
- Supply Heat Temperature: 60°C(Residential),45°C(Commercial)
- Supply Cold Water: 7°C(Commercial)
 DH Plant 2 Commercial Area 3 Waste Plant
 Since: 1983, Total floor area: 1km²
 School

Source: JHSBA http://www.jdhc.or.jp

Biomass Power in Japan

• Capacity of biomass power is increasing because of FIT scheme mainly for woody biomass since 2012. However, FIT scheme promotes power generation only in Japan.

Woody Bioenergy in Japan

• More than half of wood chip (8.7 M dry ton) was utilized for power generation only.

Biomass	Unit	Heat only	Heat and Power	Power only	合計
Wood Chip	k dry ton	1,150	3,090	4,490	8,730
Wood Pellet	k ton	40	140	190	380
Firewood	k ton	50	20	-	60
Sawdust	k ton	150	160	100	410
Others	k ton	370	260	320	960

As of 2017

Utilization	Unit	Thinned wood, remaining forest land	Remaining lumber	Waste	Import	Pruned branch
Heat only	k dry ton	110	48	55	0.6	0.4
Heat and Power	k dry ton	410	63	180	13	11
Power only	k dry ton	2,120	39	177	-	21
Total	k dry ton	2,630	150	413	14	33

Source : Forestry Agency(2018)

www.maff.go.jp/j/tokei/kouhyou/mokusitu biomass/index.html

Case of DH in Japan: Mogami town Small scale DH system in northern rural area

- 23 residential users. Annual heat demand is 183 MWh
- Linear heat density: 0.9 MWh/m
- Heat source is boiler of wood biomass

Source: Shuichi Miura, 4DH symposium(Tokyo, Mar. 14th, 2019)

Trench Length: 0.2km

Biomass Boiler:

 $90kW \times 2$

 $50kW \times 1$

- Regulatory issues that inhibit promotion of district heating, lack of public interest, relative burial due to competition between electricity, gas and oil.
- Linear heat density is relatively higher than EU countries. Some of DH systems use 3rd generation technologies already for exhaust heat from waste or biomass.
- Heat utilization technologies usually stagnating in the first and second generations of DH using steam from gas. However, electricity is used for low temperature heat supply and cooling already.
- Design guidelines and performance standards should be adopted for increasing renewable heat sources because of unoptimized piping design, low temperature difference, poor heat equipment such as heat exchangers, panel heaters and meters.

Current Status and Issues of Renewable Heating System towards 4DH in Japan

Hironao MATSUBARA, Tetsunari IIDA Institute for Sustainable Energy Policies(ISEP), Tokyo, Japan http://www.isep.or.jp/en

