

Demand response in district heating systems: on operational and capital savings potential

Dominik Franjo Dominković^{*}, Technical University of Denmark - Department of Applied Mathematics and Computer Science Rune Grønborg Junker, Technical University of Denmark - Department of Applied Mathematics and Computer Science Ignacio Blanco, Technical University of Denmark - Department of Applied Mathematics and Computer Science Karen Byskov Lindberg, Norwegian University of Science and Technology (NTNU), Dept. of Electric Power Engineering Henrik Madsen, Technical University of Denmark - Department of Applied Mathematics and Computer Science

Outline

- DH grid as storage the state of the art
- Methods: soft-coupling of models
- Case study: Zagreb, Croatia
- Results

Current state of the art

- Thermal mass of buildings and the thermal mass of water utilization:
 - -¹ Storage capacity in water much smaller than the storage capacity in walls
 - ² control strategy: loading phase: 2 AM and lasted for 3.5 hours reducing the morning peak load
 » up to 15% of daily peak demand can be moved, increasing the distribution losses by about 0.3% [16].
 - No paper implemented dynamic utilization of flexibility

 Vandermeulen A, Reynders G, van der Heijde B, Vanhoudt D, Salenbien R, Saelens D, et al. Sources of energy flexibility in district heating networks: building thermal inertia versus thermal energy storage in the network pipes. Submitt to USIM 2018 - Urban Energy Simul 2018.
 Basciotti D, Judex F, Pol O, Schmidt R-R. Sensible heat storage in district heating networks: a novel control strategy using the network as storage. IRES - 6th Int Renew Energy Storage Conf Exhib 2011:4.

Our approach

- Dynamic demand-response implementation in a real-time
- Temperature oscillations for ± 3.5 °C
- Much more often utilization of district heating grid as storage
- Soft linking of DH planning models and operational demand-response model (flexibility)
 » shadow prices
- DH expansion / increase in capacity was not modelled

- DH planning model:
 - Minimizing total socio-economic costs
 - Constraints:
 - Meeting the heat demand
 - Storage operation
 - Enough capacity in the system
- Flexibility representation:
 - Change in temperature:

 $\begin{array}{c} \text{minimize} \ \sum_{n \in N} \sum_{s \in S} \sum_{t \in T} \left[\left(C_{n,t}^{VO\&M} + C_{n,t}^{fuel} + C_t^{CO2} K_n - R_{n,t}^{ele} L_n \right) q_{n,t} \\ & + \left(C_{s,t}^{VO\&M} + C_{s,t}^{fuel} + C_t^{CO2} K_s - R_{n,t}^{ele} L_s \right) q_{s,t} \right] + \left(C_n^{cap} + C_n^{FO\&M} \right) q_n^{cap} \\ & + \left(C_s^{cap} + C_s^{FO\&M} \right) q_c^{cap}. \end{array}$

Parameters:

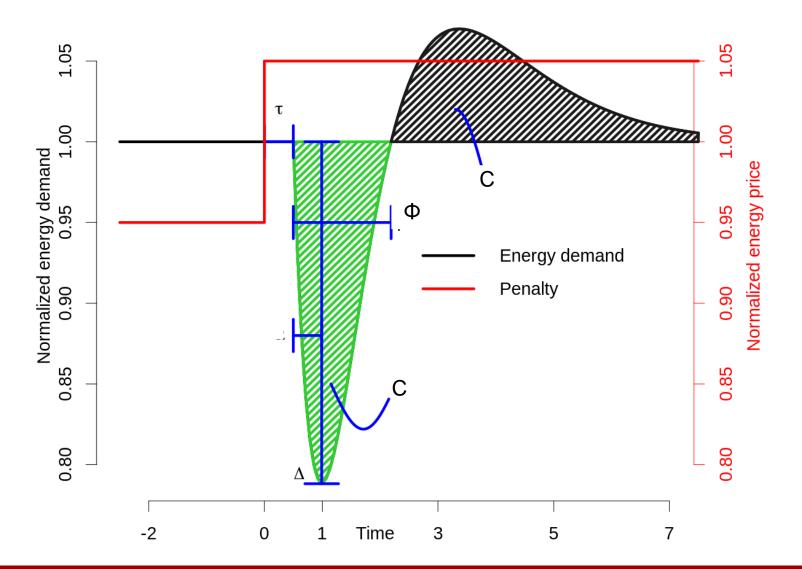
C – amount of energy that can be shifted
Φ – how quickly returning to the baseload

 Δ – how much of consumption can be used flexibly

U – energy price (DH price)

- Change in consumption due to flexibility: $\delta_t = 2logit (\Phi(\mu - X_t) - k u_t (\mathbb{1}(u_t \le 0)g(1 - X_t) + \mathbb{1}(u_t > 0)g(X_t)) - 1$

Heat generation


Original heat demand

- New heat demand: $Y_t = B_t + \Delta((1 - B_t)\mathbb{1}(\delta_t > 0)\delta_t + B_t\mathbb{1}(\delta_t \le 0)\delta_t,$

 $\frac{dX_t}{dt} = \frac{1}{C}(Y_t - B_t)$

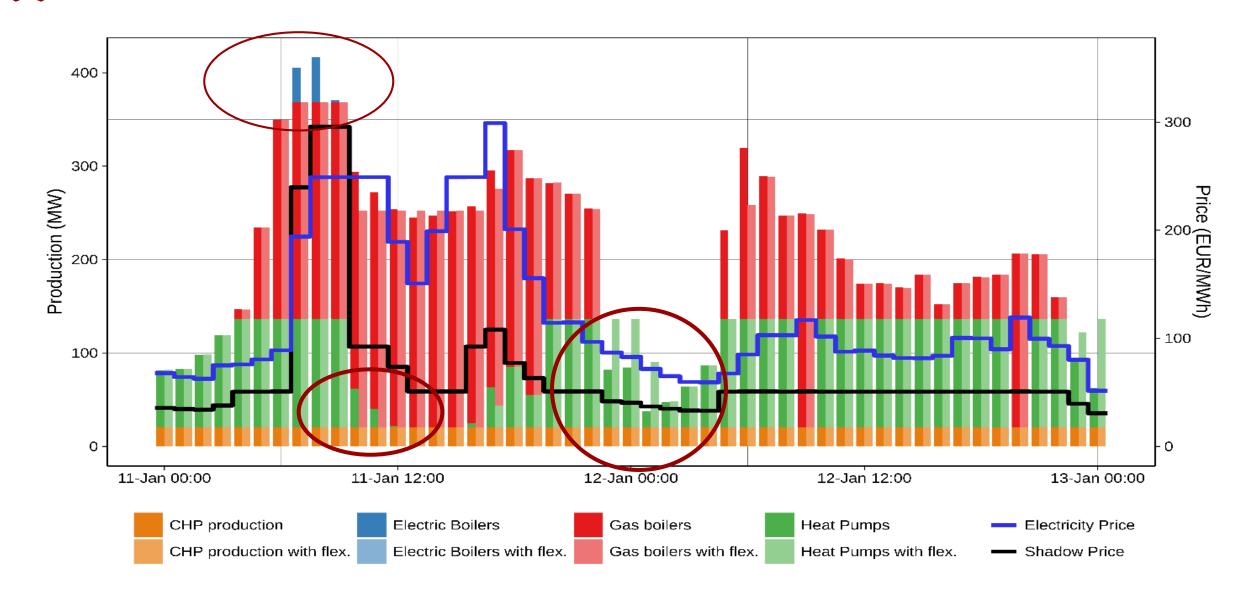
Methods

Soft-linking of models

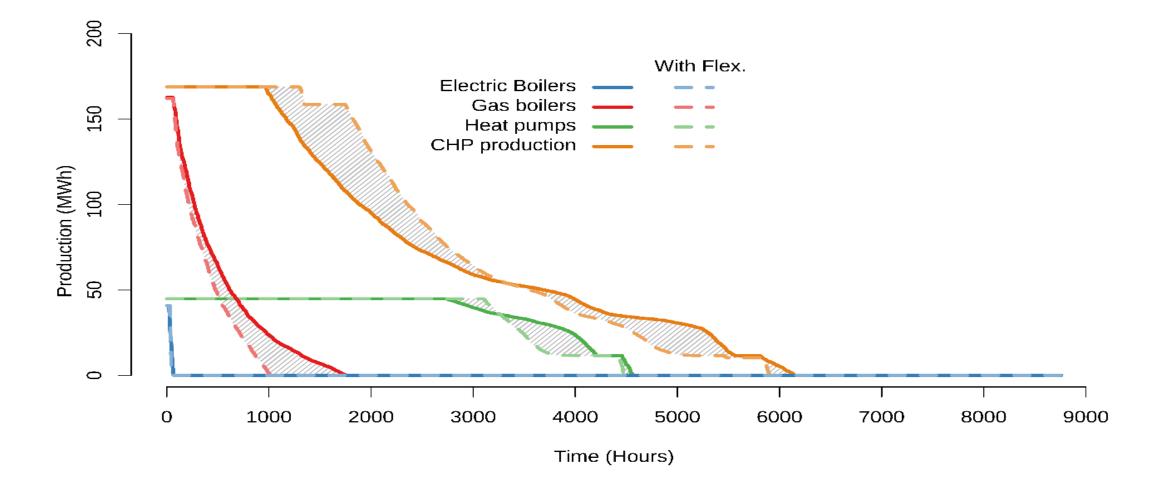
Case study – Zagreb DH

Type of the plant	Nº units	El. capacity MW	Heat capacity MW	
Dist	2 different			
Back pressure cogeneration plant*	2	0	71 + 162	systems!
Combined cycle cogeneration plant	2	2 x 25	2 x 10.25	Systems:
Gas boiler	2	0	2 × 110	
Distr	rict heating south			
Back pressure cogeneration plant	1	120	200	
Gas boiler	2	0	2 x 116; 2 x 58	
Combined cycle cogeneration plant	2	202 + 110	2 x 80	
Thermal storage	1	0	750 MWh	
District heating ne				
electric boiler		0	116+135**	
heat pump		0	116+135**	

Case study – Zagreb DH

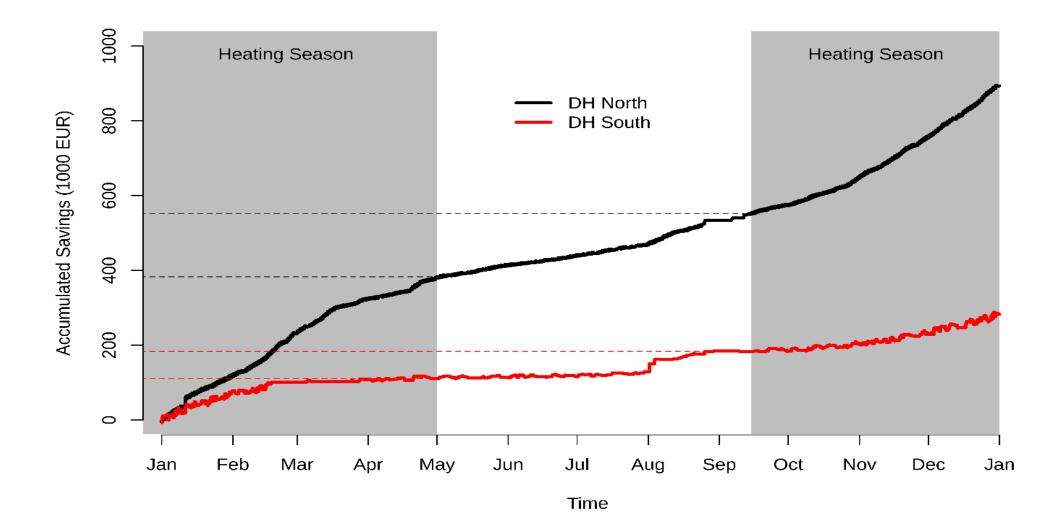

Basic	Electrified District Heating (Ele_DH)	Capacity extension (Cap_Ext)
- Currently operating plants	DH north: - NO back pressure units in the DH north - Heat pump and electric boiler <u>added</u> : 116 MW _h each DH south: - NO gas boilers - Heat pump and electric boiler <u>added</u> : 135 MW _h each	DH south, installed: - 2x gas CHP plants: 80 MW _h each - heat accumulator: 750 MWh

Energy generation


	Total CHP production (GWh)	Total gas boilers production (GWh)	Total electric boilers production (GWh)	Total heat pump production (GWh)
Basic	881	905	0	0
Basic with flexibility	893	893	0	0
Difference	1.3%	-1.3%		
Ele_DH	696	136	8.3	946
Ele_DH with flexibility	699	113	8.4	966
Difference	0.3%	-16.7%	1.2%	2.2%
Cap_Ext	963	236	3	584
Cap_Ext with flexibility	994	212	3	576
Difference	3.2%	-9.8%	-4.6%	-1.3%

DH north – impact of flexibility – Ele_DH scenario

Generation duration curves – Ele_DH scenario



Total socio-economic costs – mil EUR

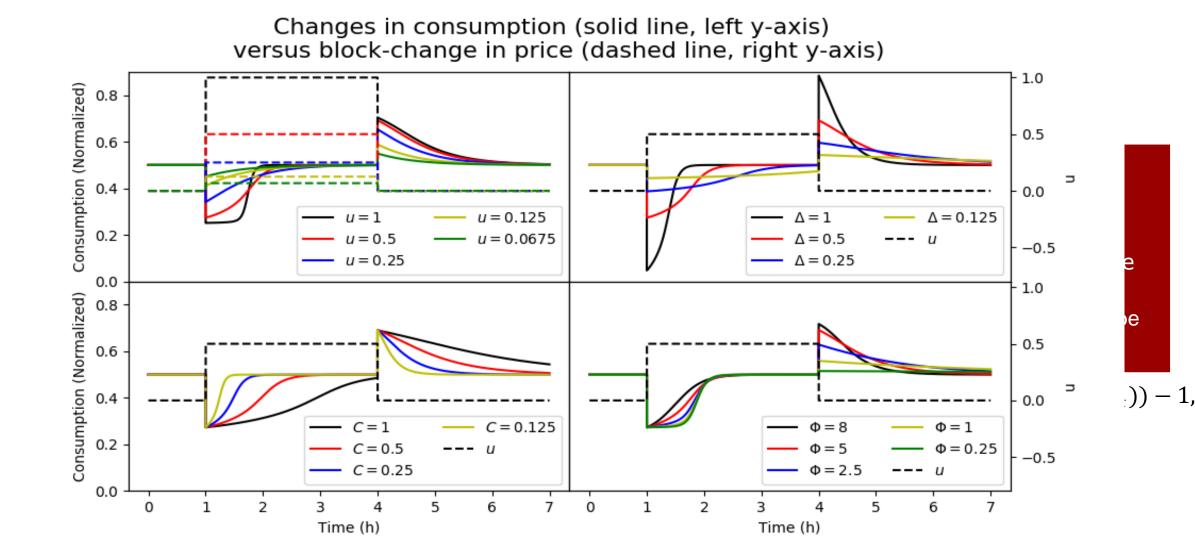
Total socio-economic costs – mil EUR											
		DH North DH South									
	Objective Value Total	Objective Value	Capital Costs	Operational costs	Objective Value	Capital Costs	Operational costs				
Basic	96.9	48.1	18.6	49.1	48.9	32.7	109.6				
Basic with flexibility	96.6	48.0	18.6	49.2	48.6	32.7	110.0				
Difference	-0.4%	-0.2%	0.0%	0.1%	-0.5%	0.0%	0.4%				
Ele_DH	78.5	31.9	12.0	36.4	46.6	38.9	88.5				
Ele_DH with flexibilit	y 77.4	31.0	12.0	35.6	46.3	38.9	88.6				
Difference	-1.5%	-2.8%	0.0%	-2.2%	-0.6%	0.0%	0.1%				
Cap_Ext	57.5	19.7	23.8	74.5	37.8	27.0	87.5				
Cap_Ext with flexibili	ty 54.4	16.7	23.8	77.4	37.8	27.0	87.5				
Difference	-5.4%	-15.5%	0.0%	3.9%	-0.2%	-0.1%	-0.1%				

Accumulated savings – Ele_DH scenario

Conclusions

- Utilization of DH grid as storage: ±3.5 K
- Socio economic savings: from 0.36 MEUR to 3.1 MEUR (0.4% to 5.4%)
- heat accumulator extension capacity could be reduced by 6%
- Automated parametrization
- Centralized implementation by DH operators

Acknowledgements


- This work was funded by the <u>CITIES</u> project nr. DSF1305-00027B funded by the Danish Innovationsfonden, <u>FME ZEN Centre</u>, and <u>HEAT 4.0</u> project nr. 8090-00046B also funded by Danish Innovationsfonden
- Big thanks to HEP Toplinarstvo for providing data on Zagreb DH grid operation

https://smart-cities-centre.org/

• D

• F

Results (III)

		DH North					DH South				
	Objective Value Total	Objective Value	Capital Costs	Operational costs	Revenue from electricity sales	Operational costs with electricity sales income*	Objective Value	Capital Costs	Operational costs	Revenues from electricity sales	Operational costs with electricity sales income*
Basic	96.9	48.1	18.6	49.1	19.7	29.5	48.9	32.7	109.6	93.4	16.2
Basic with flexibility	96.6	48.0	18.6	49.2	19.8	29.4	48.6	32.7	110.0	94.1	15.9
Difference	-0.4%	-0.2%	0.0%	0.1%	0.7%	-0.3%	-0.5%	0.0%	0.4%	0.7%	1.6%
Ele_DH	78.5	31.9	12.0	36.4	16.6	19.9	46.6	38.9	88.5	80.8	7.7
Ele_DH with flexibility	77.4	31.0	12.0	35.6	16.6	19.0	46.3	38.9	88.6	81.2	7.4
Difference	-1.5%	-2.8%	0.0%	-2.2%	0.6%	-4.5%	-0.6%	0.0%	0.1%	0.5%	3.7%
Cap_Ext	57.5	19.7	23.8	74.5	78.7	-4.1	37.8	27.0	87.5	76.7	10.8
Cap_Ext with flexibility	54.4	16.7	23.8	77.4	84.6	-7.2	37.8	27.0	87.5	76.7	10.8
Difference	-5.4%	-15.5%	0.0%	3.9%	7.5%	-73.4%	-0.2%	-0.1%	-0.1%	0.0%	0.5%