CHALLENGES IN HEAT NETWORK TOPOLOGY OPTIMIZATION

PAUL EGBERTS, CAN TÜMER, KELVIN LOH, RYVO OCTAVIANO

PROBLEM DEFINITION

- Among other solutions (hydrogen admixing to the gas grid, decentralized heat pumps etc.), transition towards a sustainable heat supply requires many new heat networks in NL.
- Currently, heat grids are designed through evaluation of manually drafted topologies.
- During design, there can be many design goals and large uncertainties in many design aspects.
 - Infeasible to evaluate all possibilities.
 - > This leads to suboptimal grid designs!

Geothermal Power Estimates in The Netherlands

https://www.thermogis.nl

GOAL

> (Final) Goal : Methodology for assisted grid design optimization

- > For a given set of actors (e.g. producers, consumers etc.), the method should;
 - > generate topologies, optimized on relevant KPIs (e.g. CAPEX/OPEX, Revenues, Network fairness, etc.),
 - handle design parameters stochastically (e.g. expansion of the grid/future actors, uncertainty on prices/demand/supply) and optimize the grid concept under uncertainty (*robust optimization*).

INHOUSE HEAT NETWORK SIMULATOR

- > Solver for momentum and energy equations.
- > System controller to drive the system (pumps/valves).
- > Solver and pre/post-processing in MATLAB.
- Easy prototyping of new concepts (system controllers, optimizers etc).
- > Model Creation: ESDL Web Editor (GIS based).
- Many component models (Geo. Well, ATES, Heat Pump, PV Panels etc.) with different levels of detail from respective TNO departments.
- > Currently being tested by engineering companies.

EXAMPLE CASE 1

Based on real case; 6 producers, 8 demand clusters

> Objective function J: Total Cost of Ownership (TCO)

 $J(u) = TCO(u) = \sum_{\substack{E = \left\{\substack{sources \\ pipes \\ pumps}\right\}}} (E^{Capex} + E^{Opex})$

- > Variables u = (y, d):
 - > 8 binaries for pipelines $y = (y_1, y_2, ..., y_8)$
 - > 13 diameters $d = (d_1, d_2, ..., d_{13})$
- Constraints (not allowing disconnected networks)
 - > $y_2 + y_3 ≥ 1$; $y_2 + y_5 + y_8 ≥ 1$; etc...

Optimization problem:

 $\min_{\substack{u=(y,d)\\y_i \in \{0,1\}\\d_i \in [0,1]}} J(u)$

SOLUTION APPROACH

- > DAKOTA used as framework
 - > From Sandia National Laboratories (http://dakota.sandia.gov)
 - > Open source
 - > Ships several optimizers
 - > Parallelization features
 - > Allows set up of iterative workflows such as Nested loops, Hybrid optimization,...
- Optimization running on HPC
- > Optimizers that can handle both integer and continuous variables
 - > Pattern search methods
 - > Branch and bound method
 - Genetic algorithms (used in this presentation)

Convergence can be improved using hybrid optimization

> Use GA to globally explore the variable space followed by a local (gradient based) optimizer

RESULTS CASE 1

Minimum TCO found after 980 iterations

- X No Pipe line
- → Pipe line
- Planned Pipe line
 (not part of optimization)

UNCERTAINTY

- In previous example no uncertainty assumed (deterministic optimization)
- > In practise large uncertainties may be presents concerning future
 - Demands
 - > Energy prices
 - > Heat sources availabilities
 - > Urban and industrial developments
- Future proof topology design needs to account for increasing uncertainty over time
- > Example case 2
 - > Same base case as before but with uncertainty in demand
 - > Assume that uncertainty is captured in 10 equiprobable realizations

Sequence of connected point is a single realization

DETERMINISTIC OPTIMIZATION PER REALIZATION

- > Objective function J (e.g. TCO) depends also on realization so J = J(u, r)
 - with u = (y, d) topology design and $r \in \{r_1, ..., r_{10}\}$ a realization
- > 10 Deterministic Optimization problems: minimize the objective functions $J(u, r_1), \dots, J(u, r_{10})$

OPTIMAL DESIGNS PER REALIZATION

8 different

topologies

Pipelines									
	y1	y2	у3	y4	у5	у6	у7	y8	TCO (x10 ⁸)
1	1	1	1	1	1	0	0	1	5.7
2	1	1	1	1	1	0	0	1	5.3
3	0	1	1	1	0	1	1	0	5.7
4	1	0	1	1	1	0	1	1	6.5
5	1	1	0	1	1	0	1	1	5.3
6	1	1	1	1	1	0	1	0	4.8
7	1	1	1	1	1	0	1	0	5.5
8	1	1	0	1	1	0	0	0	4.9
9	1	1	0	1	0	1	1	1	5.7
10	1	1	1	1	1	0	1	0	4.2

Realizations

Diameters

OVERALL PERFORMANCE OF THE FOUND SOLUTIONS

How good do the solutions perform for all realizations?

- For each realization r_i , i = 1, ..., 10, an optimal design u_i^{opt} is calculated
- > Performance measure is the expected objective function value $\overline{J}(u) = \frac{1}{10} \sum_{i=1}^{10} J(u, r_i)$ for design u

> Optimized design u_6^{opt} for realization 6 performs best among the 10 designs

This is still a suboptimal solution => rigorous approach is Robust Optimization

ROBUST OPTIMIZATION (RO)

Let uncertainty (demands, prices,...) be captured by realizations r₁, r₂, ..., r_M

Robust optimization:

Given realizations $r_1, r_2, ..., r_M$, find topology design u that minimizes the expected value $\overline{J}(u) = \frac{1}{M} \sum_{i=1}^{M} J(u, r_i)$

> Robust optimization aims at finding a topology design that is "good" for all realizations

- > RO is CPU expensive: M simulations to calculate $\overline{J}(u)$
 - Parallelization is essential

ROBUST OPTIMIZATION

> Minimum TCO found after 897 iterations

> Solution:

Optimized design

- No Pipe line
- Pipe line
- Existing Pipe line
 (not part of optimization)

ADDED VALUE ROBUST OPTIMIZATION

> Added value of RO through comparison with solutions from deterministic optimization

WRAP UP/CONCLUSIONS

First steps presented towards a framework/methodology for assisting heat network designing

- > Heat network design => optimization problem with continuous and binary variables
- > An optimization framework was setup to solve the mixed integer optimization problem allowing
 - > use of several optimizer, hybrid optimization, multi-objective optimization, constraints
- > Optimization under uncertainty (Robust Optimization) was setup
 - > Added value demonstrated

Next steps

- > Network fairness/ load balancing
 - > Investigating solution approach using Quantum Algorithms (Dwave's 2000Q system)
- > Incremental network design
- > CPU Efficiency

BACKUP SLIDES

17 5th International Conference on Smart Energy Systems

HYBRID OPTIMIZATION

- > Hybrid:
 - > Use GA as global optimizer to explore the variable space
 - > Use gradient based optimizer as local optimizer

ROBUST OPTIMIZATION

- Robust Optimization (RO): Deals with uncertainty in a rigorous way and aims at finding a design that is good for all realizations.
- Framing the problem
 - > Design vector: u (consisting of binaries y and diameters d)
 - **)** Parameter vector: r (the demands of users)

> Objective function: J = J(u, r) (cost function e.g. TCO)

ECN > **TNO** innovation for life

REDUCING RISK

- > Besides minimizing expectation \overline{J} one may desire to reduce risk
- Measures of risk:
 - > Standard deviation J_{σ}
 - > Spread at downside only: Semi- standard deviation

