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PROBLEM DEFINITION

Among other solutions (hydrogen admixing to the 
gas grid, decentralized heat pumps etc.), 
transition towards a sustainable heat supply 
requires many new heat networks in NL.

Currently, heat grids are designed through 
evaluation of manually drafted topologies. 

During design, there can be many design goals 
and large uncertainties in many design aspects.

Infeasible to evaluate all possibilities.
This leads to suboptimal grid designs!

https://www.thermogis.nl

Geothermal Power Estimates in The Netherlands

.    5th International Conference on Smart Energy Systems 2

https://www.thermogis.nl/


GOAL

(Final) Goal : Methodology for assisted grid design optimization
For a given set of actors (e.g. producers, consumers etc.), the method should;

generate topologies, optimized on relevant KPIs (e.g. CAPEX/OPEX, Revenues, Network fairness, etc.),
handle design parameters stochastically (e.g. expansion of the grid/future actors, uncertainty on 
prices/demand/supply) and optimize the grid concept under uncertainty (robust optimization).
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INHOUSE HEAT NETWORK SIMULATOR

Solver for momentum and energy equations.
System controller to drive the system (pumps/valves).
Solver and pre/post-processing in MATLAB.
Easy prototyping of new concepts (system controllers, 
optimizers etc).
Model Creation: ESDL Web Editor (GIS based).
Many component models (Geo. Well, ATES, Heat 
Pump, PV Panels etc.) with different levels of detail 
from respective TNO departments.
Currently being tested by engineering companies.

Sources and Demand
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https://smartenergysystems.eu/wp-content/uploads/2019/04/Track12_Booij.pdf
More on ESDL in session 30.

https://smartenergysystems.eu/wp-content/uploads/2019/04/Track12_Booij.pdf


EXAMPLE CASE 1

Objective function 𝐽𝐽: Total Cost of Ownership (TCO)

Variables 𝑢𝑢 = (𝑦𝑦,𝑑𝑑):
8 binaries for pipelines 𝑦𝑦 = 𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦8
13 diameters 𝑑𝑑 = 𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑13

Constraints (not allowing disconnected networks)
𝑦𝑦2 + 𝑦𝑦3 ≥ 1; 𝑦𝑦2 + 𝑦𝑦5 + 𝑦𝑦8 ≥ 1; etc…

Optimization problem:

𝐽𝐽 𝑢𝑢 = 𝑇𝑇𝑇𝑇𝑇𝑇(𝑢𝑢) = �

𝐸𝐸=
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠

𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
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𝐽𝐽(𝑢𝑢)



SOLUTION APPROACH

DAKOTA used as framework 
From Sandia National Laboratories ( http://dakota.sandia.gov )

Open source

Ships several optimizers

Parallelization features

Allows set up of iterative workflows such as Nested loops, Hybrid optimization,…

Optimization running on HPC
Optimizers that can handle both integer and continuous variables

Pattern search methods

Branch and bound method

Genetic algorithms (used in this presentation)
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RESULTS CASE 1
Using a genetic algorithm (SOGA)

Convergence can be improved using hybrid optimization
Use GA to  globally explore the variable space followed by a local (gradient based) optimizer
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RESULTS CASE 1

Minimum TCO found after 980 iterations
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UNCERTAINTY

In previous example no uncertainty assumed (deterministic optimization)
In practise large uncertainties may be presents concerning future

Demands
Energy prices
Heat sources availabilities
Urban and industrial developments

Future proof topology design needs to account for 
increasing uncertainty over time
Example case 2

Same base case as before but with uncertainty in demand
Assume that uncertainty is captured in 10 equiprobable realizations  
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DETERMINISTIC OPTIMIZATION PER REALIZATION

Objective function 𝐽𝐽 ( e.g. TCO) depends also on realization so 𝐽𝐽 = 𝐽𝐽 𝑢𝑢, 𝑟𝑟
with 𝑢𝑢 = 𝑦𝑦,𝑑𝑑 topology design and 𝑟𝑟 ∈ {𝑟𝑟1, … , 𝑟𝑟10} a realization

10 Deterministic Optimization problems:  minimize the objective functions 𝐽𝐽 𝑢𝑢, 𝑟𝑟1 , … , 𝐽𝐽 𝑢𝑢, 𝑟𝑟10
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OPTIMAL DESIGNS PER REALIZATION

.. y1 y2 y3 y4 y5 y6 y7 y8 TCO 
(x108 )

1 1 1 1 1 1 0 0 1 5.7
2 1 1 1 1 1 0 0 1 5.3
3 0 1 1 1 0 1 1 0 5.7
4 1 0 1 1 1 0 1 1 6.5
5 1 1 0 1 1 0 1 1 5.3
6 1 1 1 1 1 0 1 0 4.8
7 1 1 1 1 1 0 1 0 5.5
8 1 1 0 1 1 0 0 0 4.9
9 1 1 0 1 0 1 1 1 5.7

10 1 1 1 1 1 0 1 0 4.2

8 different 
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OVERALL PERFORMANCE OF THE FOUND SOLUTIONS

How good do the solutions perform for all realizations? 
For each realization 𝑟𝑟𝑖𝑖 , 𝑖𝑖 = 1, … , 10, an optimal design 𝑢𝑢𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜 is calculated
Performance measure is the expected objective function value

Performance of the 10 optimal designs:

Optimized design 𝑢𝑢6
𝑜𝑜𝑜𝑜𝑜𝑜 for realization 6 performs best among the 10 designs

This is still a suboptimal solution => rigorous approach is Robust Optimization

�𝐽𝐽 𝑢𝑢 = 1
10
∑𝑖𝑖=110 𝐽𝐽 𝑢𝑢, 𝑟𝑟𝑖𝑖 for design 𝑢𝑢
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�𝐽𝐽 (𝑢𝑢6
𝑜𝑜𝑜𝑜𝑜𝑜) �𝐽𝐽

5.3



ROBUST OPTIMIZATION (RO)

Let uncertainty (demands, prices,…) be captured by 
realizations 𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑀𝑀

Robust optimization:

Robust optimization aims at finding a topology design that is “good” for all realizations

RO is CPU expensive: 𝑀𝑀 simulations to calculate ̅𝐽𝐽 𝑢𝑢
Parallelization is essential

Optimization

Sampling

Simulation

𝑟𝑟𝑖𝑖 𝐽𝐽(𝑢𝑢𝑘𝑘, 𝑟𝑟𝑖𝑖)

𝑢𝑢𝑘𝑘 ̅𝐽𝐽(𝑢𝑢𝑘𝑘)

RO: nested loops

Given realizations 𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑀𝑀, find topology design 𝑢𝑢 that 
minimizes the expected value ̅𝐽𝐽 𝑢𝑢 = 1

𝑀𝑀
∑𝑖𝑖=1𝑀𝑀 𝐽𝐽 𝑢𝑢, 𝑟𝑟𝑖𝑖
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ROBUST OPTIMIZATION

Minimum TCO found after 897 iterations
Solution:
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ADDED VALUE ROBUST OPTIMIZATION

Added value of RO through comparison with solutions from deterministic optimization

�𝐽𝐽
Mean of blue dots

Robust Optimization

Added value:
9% improvement �𝐽𝐽 evaluated at solutions from Deterministic Optimization
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WRAP UP/CONCLUSIONS

First steps presented towards a framework/methodology for assisting heat network designing
Heat network design => optimization problem with continuous and binary variables
An optimization framework was setup to solve the mixed integer optimization problem allowing

use of several optimizer, hybrid optimization, multi-objective optimization, constraints
Optimization under uncertainty (Robust Optimization) was  setup 

Added value demonstrated

Next steps
Network fairness/ load balancing

Investigating solution approach using Quantum Algorithms  (Dwave’s 2000Q system)
Incremental network design
CPU Efficiency
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BACKUP SLIDES
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HYBRID OPTIMIZATION

Hybrid: 
Use GA as global optimizer to explore the variable space
Use gradient based optimizer as local optimizer
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ROBUST OPTIMIZATION

Robust Optimization (RO): Deals with uncertainty in a rigorous way and aims at finding a design that is 
good for all realizations. 

Framing the problem
Design vector:  𝑢𝑢 (consisting of binaries 𝑦𝑦 and diameters 𝑑𝑑)

Parameter vector:  𝑟𝑟 (the demands of users)

Objective function:  𝐽𝐽 = 𝐽𝐽(𝑢𝑢, 𝑟𝑟) (cost function e.g. TCO)

Input-output system: 𝑢𝑢, 𝑟𝑟 Heat Network S
Simulator

𝐽𝐽(𝑢𝑢, 𝑟𝑟)
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REDUCING RISK

Besides minimizing expectation �𝐽𝐽 one may desire to reduce risk
Measures of risk: 
Standard deviation 𝐽𝐽𝜎𝜎
Spread at downside only: Semi- standard deviation 
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Expected value
min { ̅𝐽𝐽 (𝑢𝑢) + 𝐽𝐽𝜎𝜎(𝑢𝑢)}

min { ̅𝐽𝐽 (𝑢𝑢)}

Spread as measure for risk

Reduced spread 
at the cost of 

Expectation value
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