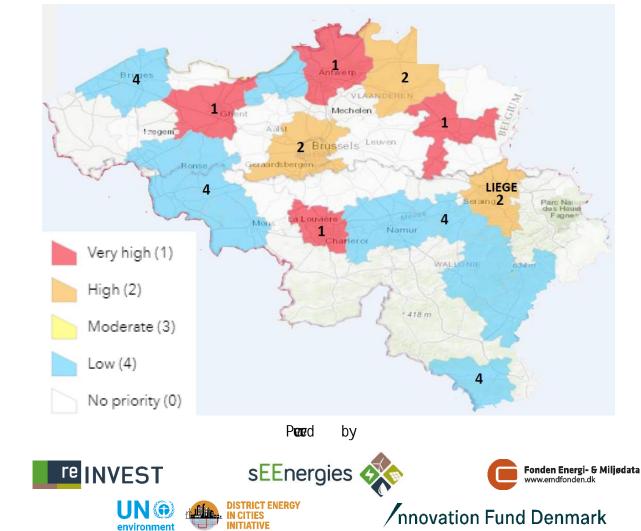
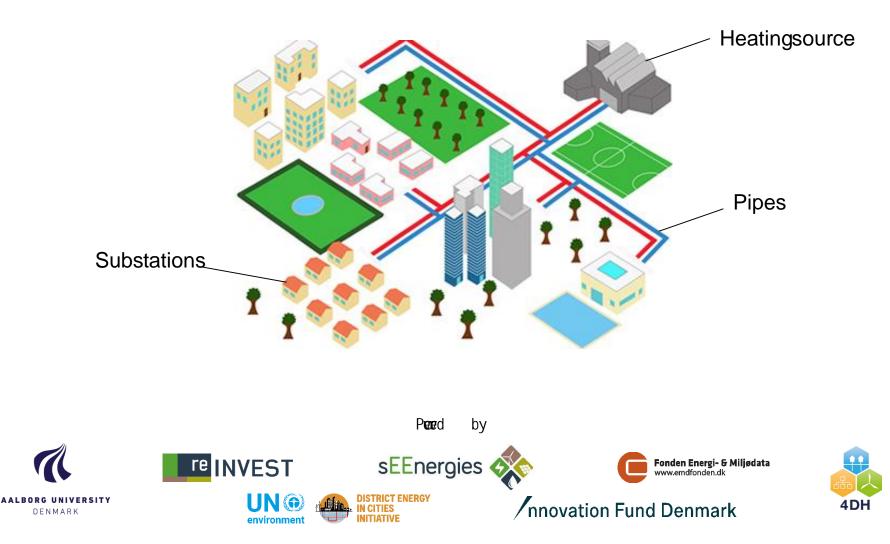

5^h letaibelCfæerre nStartEengStyren Cpehejen10 -11 Sepeber2019 #SESAAU2019

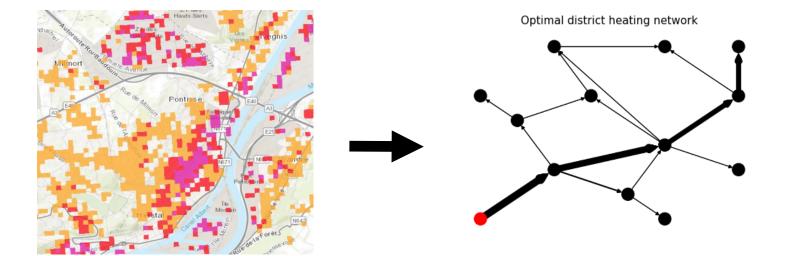

Topological optimization of a district heating network

ThibautRésimont University of LiègeThermodynamics laboratory) thibaut.resimont@uliege.be

40% of the space heating demand could be covered by excess heat in Belgium


AALBORG UNIVERSITY

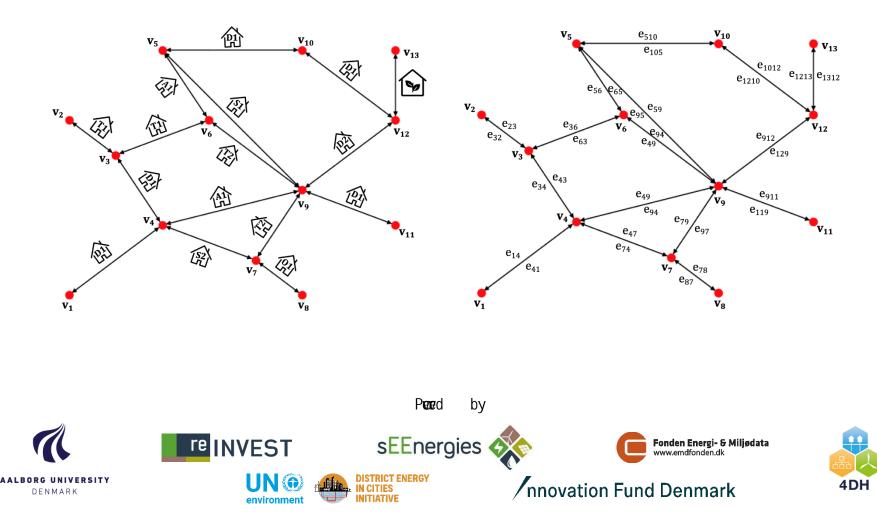
DENMARK


5^h letaibilCfæerre nStartEeng&stren Cpeheen10 -11 Seneber2019 #SESAAU2019

A solution to cover excess heat sources and to decrease GHGemissions the use of district heating networks

5^h letaibilCfæerre nStartEeng&stren Cpeheen10 -11 Seneber2019 #SESAAU2019

There is a need for optimization models as decision tools for the optimal outline of district heating networks

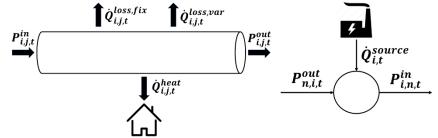


5 ^h lebanabilCoeecre cSantEengSognan Cephagen 10 - 11 Septbaer 2019 #SESAAU 2019						
Authors	Objective function	Linear	Topology	Design	Multi-period	
Apostolou (2018)	C_{TOT}	Х	Х	V	V	
Bordinet al. (2016)	C_{TOT}	V	V	Х	X	
Dorfner (2016)	C_{TOT}	V	V	V	X	
Mertz (2016)	C_{TOT}	Х	V	V	X	
Soderman (2007)	C_{TOT}	Х	V	Х	X	
Weber (2008)	C_{TOT}	Х	V	V	X	
My model	C_{TOT}	V Peezd	V	V	V	
A	re INVEST sEEnergies 🔅 🕞 Fonden Energi- & Miljødata					
AALBORG UNIVERSITY Denmark	UN 💿 environment	DISTRICT ENERGY IN CITIES INITIATIVE	nnovatio	n Fund Denmark	4DH	

5^h letaibilCfæerre nStartEengStyren Cpehnjen10 -11 Senjebær2019 #SESAAU2019

A MILPwith the minimization of the total costsas objective function using graph representation with vertices and edges

5^h lenablCbeere cSantEenstern -11 Septer2019 Cpetanen 10 #SESAAU2019

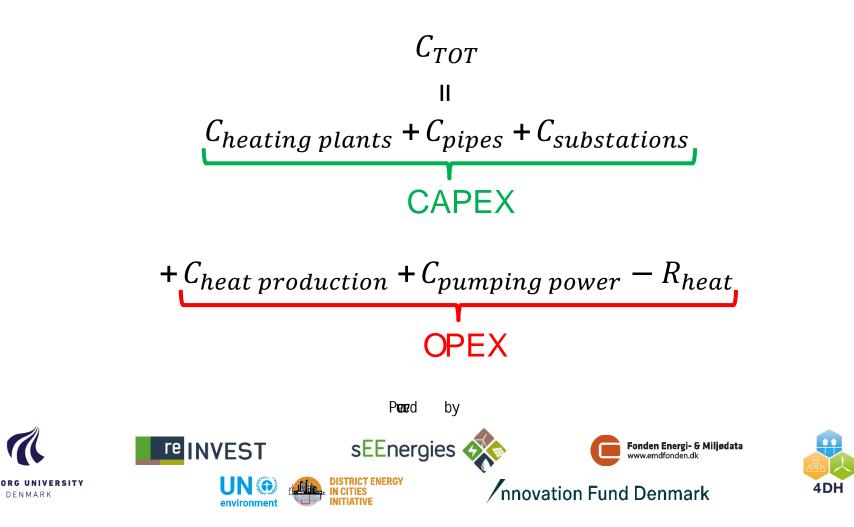

A multi-period mixed-integer linear programming model (MILP) including continuous and discrete variables is implemented

Со	ntinuous variables		Discrete variables		
	Power production mestept @ plant i	.,,	_j : Construction of a pipe on Igeij		
- 1	^{urce,installed} : Powercapacity nstall@nodei		 y_i: Construction of a power plant @ nodei 		
	$_{j,t}^{n}$: Incomingpower flow @ nestept in edgeij from node i		$u_{i,j,t}$: Use of the prospective pipe on edgeij @ timestept		
,,,,	atcomingpower flow @ ot in edgeij from nodei				
		Penerd by			
A	re INVEST sE	Energies 🂸	Fonden Energi- & Miljødata		
AALBORG UNIVERSITY Denmark		ENERGY	nnovation Fund Denmark		

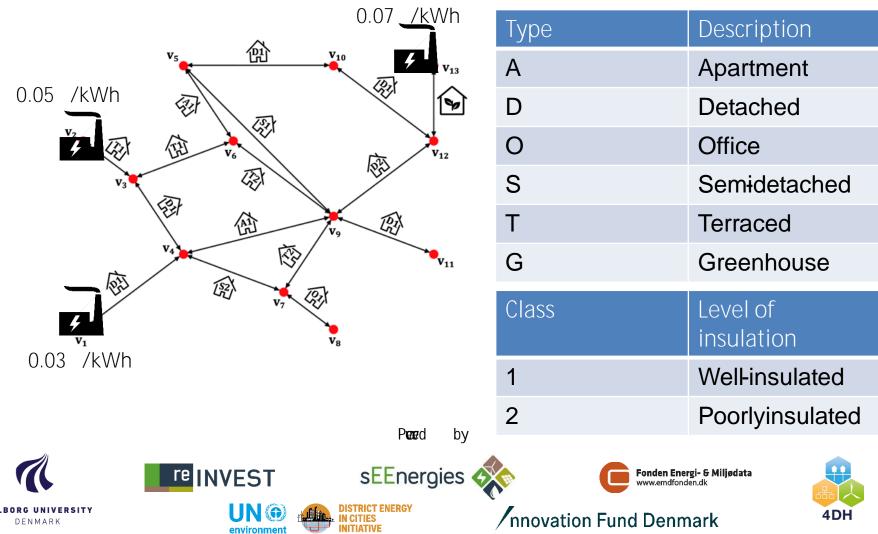
5^b I**tenib**lCfœerce oSantEengStyren Cpehnen 10 −11 Sepebner 2019 #SESAAU 2019

These variables are submitted to some physical and technical constraints

1. Energy balance overdgesandnodes



- 2. <u>Maximum thermalcapacityon edges</u> $P_{i,j}^{max} \leq x_{i,j} \cdot \dot{Q}_{i,j}^{max,edge}$
- 3. <u>Maximum thermakapacityat vertices</u> $\dot{Q}_{i,t}^{source} \leq \dot{Q}_{i}^{max,source}$
- 4. Mandatorybuilding of some pipes $x_{i,j} \ge m_{i,j}^{build}$
- 5. Possible location diffeating sources $y_i \le p_i^{location}$
- 6. Minimum power toinstallat eachnode $\dot{Q}_{i,t}^{source} \leq \dot{Q}_{i}^{source,installed}$


5^h letaibelCfæerre nStartEengStyren Cpehejen10 -11 Sepeber2019 #SESAAU2019

The objective function of the optimization problem is the minimization of the total cost of the system

5^h IteniblCfæere nSantEengStyren Cebeen10 -11 Sepeber2019 #SESAAU2019

A case study with 16 streets and 3 potential heating sources is taken into account

5^h I tensibil C feerre of ant Eens ten Ceebaen10 -11 Septer2019 **#SESAAU2019**

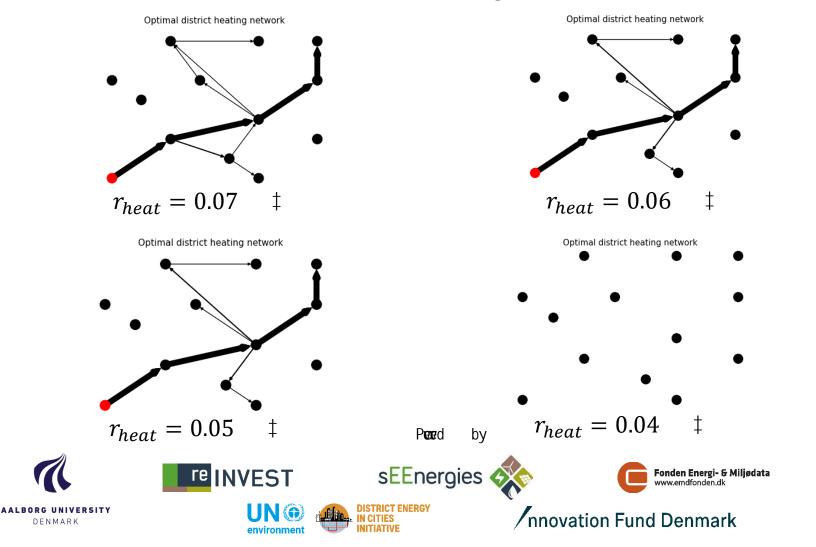
Is it profitable to build a district heating network considering a heating revenue of 0.08/kWh for a project lifetime of 25 years?

Optimal district heating network Penerd by re INVEST sEEnergies

DISTRICT ENERGY

IN CITIES

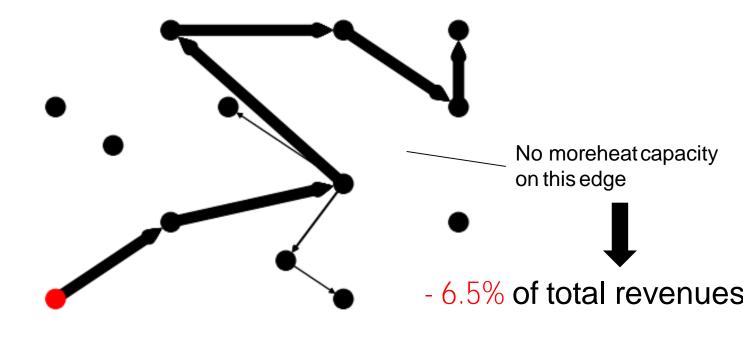
- 25% of CO_2 emissions



www.emdfonden.dk

5^h IdenialCfæerre nSantEeng&gren Cpelagen10 -11 Sepelagen2019 #SESAAU2019

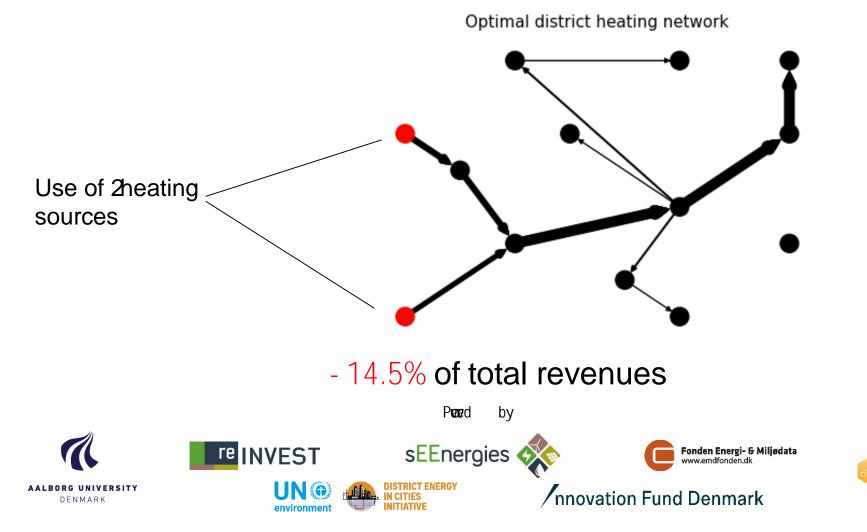
What happensif the heating revenue is decrease d Lessstreets are connected to the district heating network!



4DH

5^h letaibilCfæerre nStartEeng&stren Cpabien10 -11 Senpber2019 #SESAAU2019

What happensif a pipecannot be built in a street? The network topology


Optimal district heating network

5^h letaibelCfæerre nStartEengStyren Cpehejen10 -11 Senjebær2019 #SESAAU2019

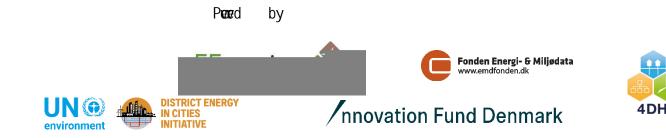
What happensif a unique heating source has not enoughpower capacity to feed the entire network? The network copology

4DH

5^h lenaibalCfæerre noSantEengStyren Cpehagen10 -11 Sepebaer2019 #SESAAU2019

District heating networks can be more economically and environmentally profitable than decentralized heating production units!

Next steps:


- Includestorageunits into the networks
- Includeelectrificationinto heatingsources
 potential
- Extendthe model tolargercasestudies

5^h IdenialCfæerre nSantEeng&gren Cpelagen10 -11 Sepelagen2019 #SESAAU2019

Thanks for your attention!

ThibautRésimont University of LiègeThermodynamics laboratory thibaut.resimont@uliege.be

