

Reducing local energy system CO₂ emissions

by exploiting differences in district heating and electricity CO₂ intensity in a local energy market

Inger-Lise Svensson 11 September 2019

- 1. About the FED demonstrator and the local energy market
- 2. Preliminary analysis of the savings potential
- 3. Tentative evaluation results

#fedgbg

COOPERATION BETWEEN NINE PARTNERS

The FED Project

- A demonstrator funded by the UIA
- Demonstrating an integrated local energy market
- Focusing on reducing CO₂ and primary energy use on Chalmers University's campus in Gothenburg
- New investments, local energy market, evaluation

The Chalmers campus area

- Chalmers Campus has a district heating and a district cooling grid
- Several production units before the start of the project (biomass boiler, CHP, solar PV, heat pumps, cooling machines, absorption cooling)
- Power grid where Swedish Energy Markets Inspectorate concessions (permits) do not apply (private area)
- New investments in storage of electricity and cooling, more solar PV, connection of cooling production to the municipal cooling grid and active building control

CAMPUS JOHANNEBERG CHALMERS

The local energy market

- Energy demand and supply matching function.
- Integrating different energy carriers (heating, cooling, electricity).
- Defines prices and transactions.
- Energy market and system service market
- Hourly market settlement
- All producers and consumers represented by software agents, bidding to the market

Preliminary analysis of potential savings

8

Research question

 What is the impact on local CO₂ emissions and primary energy use by just resdispatching the existing system through optimization to minimize cost or CO₂ (taking into account the production in the outside grid)?

Methodology/Analysis

 Optimization based investment analysis with a holistic integrated view of the local energy system

 Optimisation based redispatching of local generation units to establish the potential reductions possible in terms of costs and emissions

Redispatching

- Cost optimization reduces CO₂ emissions
- Largely an effect of increasing exports during high demand periods
- Dispatching heat pumps to hedge differences in electricity and heating prices

Redispatching

- By redispatching the existing units a total reduction in CO₂ emissions is possible
 - 22 % total reduction in emissions through cost optimization
 - 3 % reduced operating costs
 - 30 % emissions reductions possible, at 41 % increase in operation cost

Tentative evaluation results

Tentative results from live evaluation (PR3)

- 12 % decrease in primary energy
- 23 % decrease in imported CO₂ emissions
- 107 280 transactions made in the market place

Thank you!

Presenter: Inger-Lise Svensson, PhD Email: inger-lise.svensson@ri.se

To learn more about FED, visit: www.johannebergsciencepark.com/en/project s/fed-fossil-free-energy-districts

Investments made

Investment options	Capacity		
Boiler 2	6000 kW		
Turbine	800 kW		
Cooling to MC2	YES		
TES	285m3		
BITES	14.9 MWh [5 Buildings]		
Building Advanced Control (BAC)	[5 Buildings]		
PV	800 kW		
BES	320 kWh		

Results if minimizing CO₂

Change in	CO ₂ factor from waste heat is 98 g/kWh; with TES	CO ₂ factor from waste heat is 0 g/kWh; with TES	CO ₂ factor from waste heat is 98 g/kW; without TES	CO ₂ factor from waste heat is 0 g/kWh; without TES
Total PE	22.8%	22.7%	22.5%	22.5%
Total CO ₂	-91.3%	-61.2%	-89.2%	-59.6%
Peak CO ₂	-48.1%	33.4%	-34.5%	-47.5%
Operation cost	-3.6%	3.3%	-3.3%	3.4%
Total investment cost	69.6 MSEK	69.6 MSEK	63.3 MSEK	63.3 MSEK

