

High Temperature District Cooling –

Possibilities and challenges based on an existing system and its connected buildings

Maria Jangsten, PhD Student Chalmers University of Technology Gothenburg, Sweden 5th International Conference on Smart Energy Systems
Copenhagen, 10-11 September 2019
#SESAAU2019

District Heating

District Cooling

Buildings

District Cooling Temperatures in Gothenburg and "Low Delta-T Syndrome"

"Low Delta-T Syndrome" Reduces Free Cooling

"Low Delta-T Syndrome" Reduces Free Cooling

6 % Increased Free Cooling if "Low Delta-T Syndrome" Resolved

6 % Increased **Free Cooling if** "Low Delta-T Syndrome" Resolved

[MW]

Building
Chilled Water
System
- ideal
temperatures

Building Chilled Water System - actual temperatures

Building Chilled Water System - subsystem temperatures

Building Chilled Water System – High Temperature Cooling

High
Temperature
Cooling in
Buildings
Enable More
Free Cooling

Higher Temperatures

Challenges

Building return temperatures lower than 18 °C

Non-optimized building supply temperature set-points

Incentives for customers are needed

Possibilities

Existing building systems allowing for higher temperatures

Building supply temperature outdoor temperature compensated

Collaboration with customers for new building installations

High Temperature District Cooling

