

Opportunities and challenges of future district heating portfolios

Smart Energy Systems

4th Generation District Heating, Electrification, Electrofuels and Energy Efficiency

10-11 SEPTEMBER 2019 - COPENHAGEN

AALBORG UNIVERSITY DENMARK

Presenter: Richard Büchele

Richard Büchele, Lukas Kranzl, Michael Hartner, Jeton Hasani, David Schmidinger

Powered by

Agenda

- Background and Introduction
- Method

2

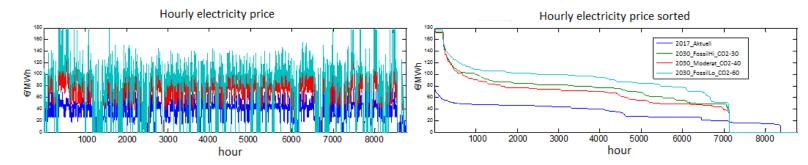
- Scenarios & Parameters
- Assessed Portfolios
- Summary of results
- Conclusions und Key-Messages

Background and Introduction

- Ongoing transition of energy sector \rightarrow challenges for district heating
 - Changing framework conditions due to energy and climate policies
 - Rising (?) energy prices and CO₂ prices
 - Heat demand reduction due to thermal building renovation
 - New opportunities and challenges of sector coupling and digitization
 - Revised Renewable Energy Directive 2018/2001
 - Annual increase of 1% of share of renewables in the (district) heating sector
 - Austrian "Mission 2030": 100% renewable electricity by 2030 (annual balance)
 - Impact on electricity prices? Impact on flexibility options?
- → How do these possible future framework conditions affect different concrete portfolio options of an Austrian district heating company?

Method overview

5th International Conference on Smart Energy Systems, Copenhagen, 10-11 September 2019 #SESAAU2019


Scenarios & Parameters

Price scenarios

5

- 2017 Current
- 2030 FossilHi_CO2-30
- 2030 FossilMod_CO2-40
- 2030 FossilLow_CO2-60
- Resulting hourly electricity prices

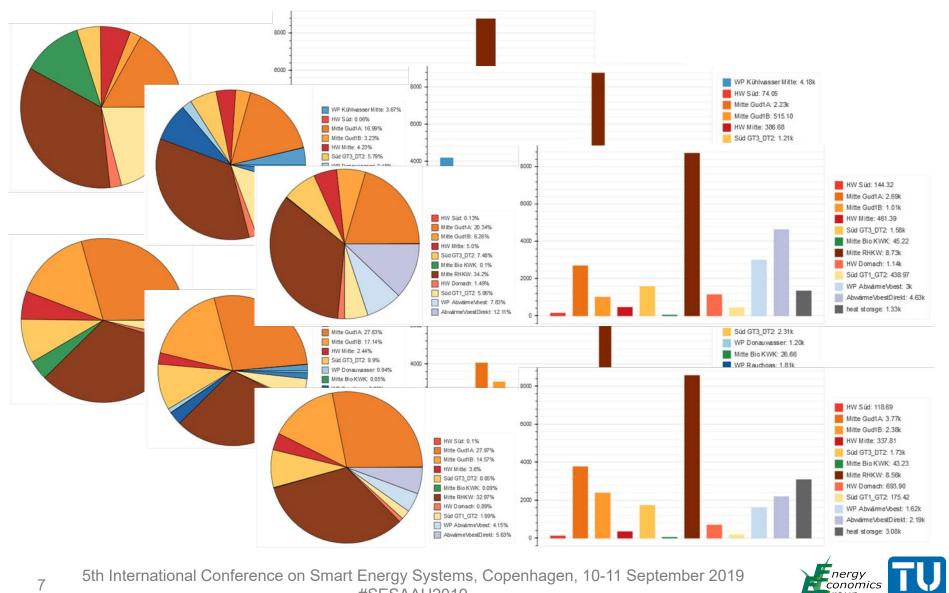
	2017	2030			
	Current	FossilHi_CO2-30	FossilMod_CO2-40	FossilLow_CO2-60	
Gas (EUR/MWh)	20.3	32.1	29.8	27.2	
Coal (EUR/MWh)	5.9	8.3	7.7	5.9	
Oil (EUR/MWh)	25.5	63.4	55.4	42.5	
CO2 price (EUR/t)	7	30	40	60	
Biomass (EUR/MWh)	24.5	32.9			
Waste (EUR/MWh)	0				
Excess heat high temp (EUR/MWh)					
Excess heat low temp (EUR/MWh)					

- Current taxes and network fees for electricity & gas for all scenarios / portfolios
- Biomass Feed-In-Tariff for "Status Quo" and "Biomass" portfolio: 100 / 130EUR/MWh_{el}
- Real district heat demand profile 2017 with ~5% heat demand reduction until 2030

Assessed DH portfolios

P0 Status Quo = Current Portfolio

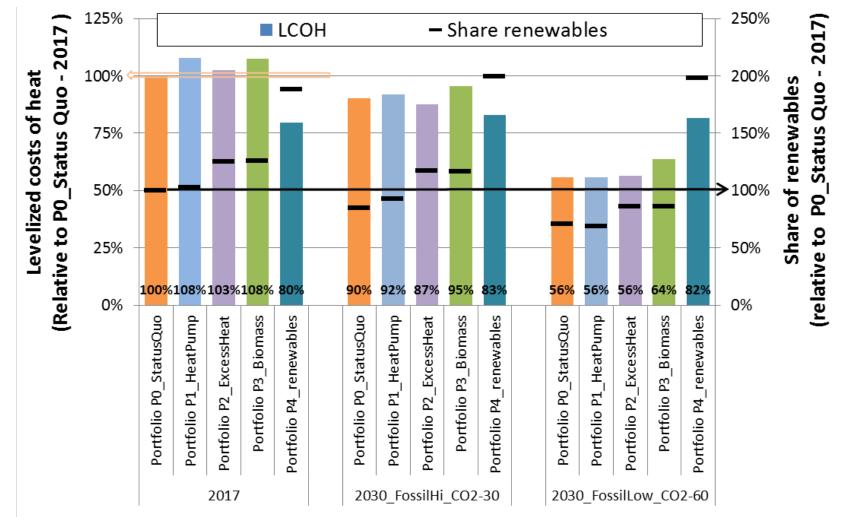
Waste incineration, 4 gas & 1 biomass CHP heat storage, peak load gas boiler


- P1 Heat pump (HP)
 - + 55 MW of different HP types
 - + Heat storage 80 MW / 2 GWh
- P2 Excess heat
 - + 30 MW excess heat direct (high temp)
 - + 30 MW excess heat via HP (low temp)
- P3 Biomass CHP 2
 - + 30 MW_{th} / 9.6 MW_{el} Bio CHP 2 + 20 MW flue gas heat pump
- P4 Renewables(*)
 - 345 MW fossil CHP phase-out
 - + 30 MW excess heat direct (high temp)
 - + 30 MW excess heat via HP (low temp)
 - + 45 MW of different heat pump types
 - + 50 MW river-water heat pump
 - + Peak load heat only boiler
 - + Heat storage 140 MW / 12 GWh

	Portfolio	(Re-) Invest- ments	Therm. production capacities	Heat storage capacity	Storage in/out power
Р,	P0 Status Quo	120 Mio EUR	567 MW	1300 MWh	60 MW
	P1 Heat pump	158 Mio EUR	622 MW	3300 MWh	140 MW
	P2 Excess heat	141 Mio EUR	627 MW	1300 MWh	60 MW
	P3 Biomass CHP 2	165 Mio EUR	617 MW	1300 MWh	60 MW
	P4 RES	111 Mio EUR (*)	475 MW	13300 MWh	200 MW

(*) in this portfolio there are no (re) investments into electricity generation and therefore no revenues from fossile CHP's

Results



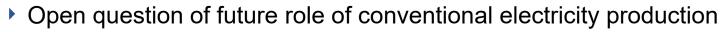
Group

WIEN

5th International Conference on Smart Energy Systems, Copenhagen, 10-11 September 2019 #SESAAU2019

Results: Levelized costs of heat (LCOH) + share of renewables (relative to scenario "Portfolio P0_Status Quo 2017")

5th International Conference on Smart Energy Systems, Copenhagen, 10-11 September 2019 #SESAAU2019


Conclusions and Key-Messages

- Increased renewable production → increased volatility of electricity price (increased hours with low but also with high electricity prices)
 - Amount of hours? Which units will set price in between? CO₂ price?
- Higher flexibility demand of production units (fast ramping, many starts/stops, less full load operation)
- Portfolio should be able to react to high but also to low electricity prices
 - Hedging with heat pumps $\leftarrow \rightarrow$ CHP units
- Increase of RES-H share by 1%-point p.a. achievable
 - Renewable portfolio achieves by far highest share of renewables and lowest CO₂ emissions and comparable or even lower cost of heat

BUT:

9

 Loss of electricity production (and services) and revenues from electricity production in scenarios with high electricity price

• CHP? Reserve capacities? Gas-CHP displaces coal!!

5th International Conference on Smart Energy Systems, Copenhagen, 10-11 September 2019 #SESAAU2019

nerqy

conomic

5TH INTERNATIONAL CONFERENCE ON

Smart Energy Systems

4th Generation District Heating, Electrification, Electrofuels and Energy Efficiency

10-11 SEPTEMBER 2019 - COPENHAGEN

Tank you for your attention!

Contact: buechele@eeg.tuwien.ac.at

