FLEXIBLE DISTRICT HEATING NETWORK MODEL DEVELOPMENT FOR MASS FLOW, PRESSURE AND HEAT LOSS PREDICTION

Author: Leire Chavarri Shobhana Singh, Florin Iov

Department of Energy Technology Aalborg University

DENMARK

Agenda

- Objective
- Challenges
- DH Model:
 - Requirements
 - Current state
 - Calculations
 - Practical example
 - Validation
- Conclusions
- Future work

Objective

- Reach a future renewable non-fossil heat supply as part of the implementation of overall sustainable energy systems.
- The present generation of district heating and cooling technologies have to be developed further into a new generation.

4TH Generation of District Heating

Challenges

- **Increasing urbanization** leads to urban densification and dispersion:
 - Structure of heat production changes from centralized to decentralized into smaller and more geographically distributed plants.
- Ability to supply low-temperature district heating for space heating and domestic hot water (DHW):
 - More energy efficient buildings (zero emission or plus energy houses).
 - Ability to distribute heat in networks with low grid losses.
- Ability to **recycle heat** from low-temperature sources and integrate **renewable** heat sources such as solar and geothermal heat.
- Increasing need for mobilizing **power balancing services** utilizing district heating systems. Smart-grid **Balance Supply and Demand**

DH Model: Requirements

- Software: Matlab
- **Flexible** and easy to add: topology, thermal loads and units.
- Able to **dynamically predict**: temperature, pressure mass flow, time-delay
- Able to be integrated with **electrical systems** and various hybrid assets e.g. Heat Pumps, electric boilers, etc.
- **Validated** against dedicated tools: experimental data.
- Able to run both long **off-line** but also **Real-Time simulations**.

nnovation Fund Denmark

DH Model: Current State

- One supply/return pipe is considered between two nodes
- Suitable for time-domain simulations during a steady state (time delay is not perceived)
- Currently limited to tree topologies but no limitation in the number of nodes
- Able to dynamically predict:
 - Temperature propagation (losses) between consumption nodes
 - Pressure losses
 - Total mass flow
 - Mass flow at each consumption

DH Model: Calculations

*Both for supply and return pipes

Hydraulic Model

DH Model: Inputs

Pipe Characteristics	Length of the pipes from node to node	L _n
	Internal Diameter (each pipe)	D_1
	External Diameter (each pipe)	D_2
	Insulation Diameter (each pipe)	D_3
	Depth from the ground to the centre of the pipe	Н
	Density, heat capacity and conductivity of the insulation	ρ_{ins} , cp_{ins} , k_{ins}
	Conductivity of the ground	k_g
Time dependent parameters	Nodes consumption (changes with time)	Q_n
	Supply temperature (changes with time)	Ts
	Return temperature from the nodes (changes with time)	Tr
	Soil temperature (changes with time)	Tg
	Minimum mass flow in the pipes	m _{min}

nnovation Fund Denmark

DH Model: Practical Example

DH Model: Practical Example

During the calculation, there are 2 iterative process happening at the same time:

- 1. To assure fully develop flow
- 2. To assure final mass flow

Powered by

DH Model: Practical Example

Time dependent Inputs:

DH Model: Practical Example

DH Model: Validation

'Experiments on Heat Losses from District Heating Pipelines, Energetika, vol 2, pages 35-40'

https://www.lmaleidykla.lt/ojs/index.php/energetika/index

Powered by

13

AALBORG UNIVERSITY

DENMARK

DH Model: Validation

Deviation < 5%

14

DENMARK

DH Model: Conclusions

- A simple tool for DH parameter prediction
- From simple to complex
- Is developed in Matlab environment
- It is flexible to read different topologies
- It can be used for:
 - Studying interactions with electrical distribution grids (Smart-grid)
 - Assessment of system level control and optimization
 - Real-Time simulations with industrial controllers In-the-Loop

15

nnovation Fund Denmark

DH Model: Future Work

- Implementation in Opal-RT tools for Real-Time system integration studies (in progress)
- Inclusion of pressure differences due to terrain height
- Implementation of dedicated district heating elements such as bypass valves, heat exchangers, other energy generation substations...
- Validation against a real small DH network

Acknowledgements

The authors acknowledge support from PSO-Forskel/EUDP through Grant No. 12539 "Local heating concepts for power balancing"

Powered by

