HEATman / HEAT 4.0

Digitally supported district heating

HEATman – Implementing 4DH and SES

Alfred Heller, ahr@niras.dk

/nnovation Fund Denmark

HEATman – In the Context of SDG

It's all about the Sustainable Development Goals

DH targets the SDG 7, Affordable and Clean Energy

DISTRICT HEATING AND COOLING AND ...

- Affordable
 - Cooperative, common (, democratic) infrastructure
 => increasing the overall efficiency
 - => extremely economic in the long run
 - Clean
 - => by utilising waste energy from many sources
 - => by renewable energy
 - => by integration with other systems
- ... but also other SDGs

DH can be owned in common and run democratically

The Danish way of running cooperative infrastructure An important lection.

The Digitalisation Agenda

The Digital Roadmap for DH&C (by DHC+ Technology Platform)

Conclusion and goals for further demands:

- Production-consumption control must be integrated
- Intelligent algorithms should be developed
- Need for business models and tariffs that benefit customers
- □ Power to operate by the DH, incl. customers installations
- Demand for self learning, thermo-hydraulic hybrid models
- ✓ Automated fault detection, animalities in data, leakage detection etc.
- ✓ Remote control and monitoring
- Building control, standardisation, contractual indoor climate services, models
- ✓ Cross-software interoperation, GIS, City-GML, tools, methods for planning
- Software development
- Infrastructure development
- Pilote/Lighthouse projects
- ✓ Data, privacy, GDPR and service provision
- ✓ Sector coupling
- Horizontal topics (big data, AI) ----- N/A-Blockchain

The Context for HEATman

From 4DH to the digitally supported district heating and smart energy system

HEAT 4.0: Budget and key values

Key Project figures

Project title	HEAT 4.0 Digitally supported Smart District Heating
Project acronym	HEAT 4.0

Project - start date (on the form: dd-mm-yyyy)	01-11-18									
Project - end date (on the form: dd-mm-yyyy)	01-11-21									
Duration	3 years									
Total Project budget	kr. 37.267.452									
Total IFD investment incl. overhead	kr. 25.383.272									
IED invoetment stee	Project	Industrial research	Experimental development							
	68,11%	78,72%	28,19%							

Total IFD investment excl. Overhead	kr.	20.692.286
Total IFD investment for overhead	kr.	4.690.986
Administrator	P1 - NIRAS A/S	

Please note: HEAT 4.0 is the first step towards the solutions platform HEATman

HEATman - Partners

A product and service platform

HEATman definitions

How HEATman sees the world?

HEATman simplifies the District Heating Concept to

- 1) Heat Demand for the district
- 2) Distribution of heat (and storage)
- 3) Production of heat

In the time scale, we cover from short to long term issues:

	Today 2019 Start	2020 2021 2022 2023	2024 2	025	12026 Add	l ²⁰²⁷	1 ²⁰²⁸	2029 es to the	2030 e time	203 line	31 203	32	2033	2034	2035	203	36	2037	2038 Finish	
10-1	- 18				, (dd	cubito ini		00 10 11											Inui	1-02-38
	Task								2024								2034			
0	Mode 👻	Task Name	- Duration	v 20	17 2018	2019 2020	2021	2022 202	3 2024	2025	2026 2027	2028	2029 2	030 2031	2032	2033	2034	2035 20	36 2037	2038
	*?	Daglig planlægning	1 day			16-12														
	*?	Prædiktering drift	3 days			18-12														
	*?	Revisionsplanlægning	365 days																	
	*?	Hovedplan (Master plan)	1095 days																	- /
	*?	Investeringshorizont	5000 days																	CHAN
/	*	Energiaftaler (tilskud, skatte)	1100 days																	AULE/
	*?	Indgreb	200 days			🔶 19-0	9													Y
	*?	Indgreb	500 days				12-1	1											CE	- Ser
	*?	Indgreb	1100 days					• د	2-03										100	
	*?	Indgreb	2000 days								13-0	8							ALL C	

HEATman – the toolbox for district heating companies

The best way to **understand HEATman** is to see it **as a toolbox with a lot of services, tools, software and solutions** that can be combines to serve the needs of district heating companies and the sector.

HEATman is a solution platform HEATman is a cooperation and partnership HEATman is a product HEATman is a way of thinking 4DH implemented

That is how we do it

HEATman – digitally supported Smart District Heating

Getting the whole together

, which is not necessarily easy to understand

... Examples explain

A simple tool example

Demand model service from cloud

Need by customer (DH, consultant, students, researchers ...): **Method:** We build a cloud service that provides various, competing demand modelling services, such as

- Degree day corrected demand as time series and plots
- Aggregated demand predictions as time series and plots
- Company demand prediction services by current partners
- Researchers demand prediction models implemented
- Student tools
- More to come

Status:

- ✓ Cloud and service infrastructure ready as development tool
- Business version and models not in place

An intelligent DH Unit

Another simple example of a HEATman tool

Goal:

An intelligent DH unit

Implementation: Leanheat & Danfoss

Research: AU, DTU – Civ. Eng.

Testing by DH:

- Trefor Varme
- Brønderslev Forsyning
- Hillerød Varme

State of art – System optimization Tool example 2 – STEP 1

Current situation:

Every optimization software works on one component

No coordination

Optimization across the overall district heating _{Step 2}

Goal:

We aim at enabling communication and cooptimization between DH components.

Infrastructure: DTU Management, NorthQ

Research: DTU Compute

Implementation: Enfor, EMD, Neogrid

Testing at DH:

- Trefor Varme
- Brønderslev Forsyning
- Hillerød Varme

The involved tools

- The tools for
- Controlling
- Optimization
- Prediction
- Energy dealing
- Dimensioning
- Planning
- Long term planning

Adding data-intelligence models

Goal:

We adopt data-intelligent models from e.g. Smart Meters in all involved DH components.

Research: DTU Compute

Implementation: Enfor, EMD, Neogrid

Testing at DH:

- Trefor Varme
- Brønderslev Forsyning
- Hillerød Varme

Smart Energy System integration

More than a HEATman tool

Goal:

Electrification of DH

Implementation: EMD International

Research: DTU Compute

Testing by DH:

- Trefor Varme
- Brønderslev Forsyning
- Hillerød Varme

HEATman – digitally supported Smart District Heating

Getting the whole together

A tool list (application version)

- ✓ Development cloud infrastructure in place
- ✓ Communication in OPC-UA Baseline data collection (ongoing)
- ✓ Case implementation (ongoing)
- Business cloud infrastructure
- **C**ross platform communication (ongoing) and optimization
- Data-intelligent cross-platform control
- Forecasting and Demand modelling
- Smart DH Unit
- □ Smart Buildings
- Electrification
- □ Leakage detection
- □ Baseline and screening
- □ Short and long term planning
- □ Values and export

more

EXTRAS: Extension of existing tools that was not plant and much

HEATman – Perspectivation

Getting it together with the rest of the world

District heating and cooling is an important technology to implement SDGs HEATman is a tool to do so

HEATman can be adopted to other Utility Infrastructure NIRAS works on LEAKman, DRAINman and others

We expect first marked-ready HEATman tools by summer 2020. New tools will occur as work is going on

The HEAT 4.0 grant ends at February 2022

You will be able to experience all solutions at partner DH.

Source: http://sru.dk

Almost out of context

HEATman has also the component "thermal storage" TES

We work extensively on the next generations PTES at an international level

Sorry for not having this subject included.

Alfred Heller, ahr@niras.dk

HEATman – Not used

...

•••

0101040 1010110110101010010 110010101 10101010 0101010101010 0101010

http://slcontrols.com

21 **NI**

Source: http://plan.aau.dk