GENERATION OF DAILY LOAD TYPOLOGY FOR DISTRICT HEATING SIMULATION AND OPTIMISATION

Pierrick Haurant, Mohamed Mabrouk & Bruno Lacarrière

IMT-Atlantique - DSEE / GEPEA - OSE

Copenhague, September 9th 2019
Contents:

1. Context
 - Nantes Centre Loire district heating

2. Typology methodology
 - Clustering
 - MCDA

3. Results
 - Typical days characterisation
 - Validation

4. Conclusion & Future works
85 km of pipes
Multi-sources (2 sites, 8 production units)
360 substations (16000 dwellings - sport, health & public facilities ...)
84 % from RES & R

Focus on a specific part:
Connected through a heat exchanger
37 Substations
Context
Nantes Centre Loire district heating

Simulation & optimisation

Combining data from monitoring and DH modelling:

1. Characterisation of the DH (inverse methods)
 - Heat loss coefficient
 - Heat exchangers characterisation

2. Optimisations:
 - Energy systems management
 - Energy in return pipes
 - Control laws of the secondary side
 - Supply temperature in the network

Iterative methods: gradient methods or metaheuristics

\[0.5 \, [s/simu] \times 10 \, [it] \times 24 \, [hours] \times 365 \, [days] = 12 \, h \, [of \, simulation] \]

Need of reducing computational costs

→ Simulations from Typical Days (TD) instead of a whole Time Series (TS)?
 For what impact on results?
Typology methodology
Clustering

Substations load time series

Daily characterization
- Energy E_d
- Magnitude R_{pd}
- Variability V_{pd}

$$E_d = \sum_{ss=1}^{N_{ss}} \sum_{h=1}^{24} P_d(ss,h)$$

$$R_{pd} = \max_h \left(\sum_{ss=1}^{N_{ss}} P_d(ss,h) \right) - \min_h \left(\sum_{ss=1}^{N_{ss}} P_d(ss,h) \right)$$

$$V_{pd} = \sum_{ss=1}^{N_{ss}} \sum_{h=1}^{24} \left| \frac{dP_d(ss,h)}{dt} \right|$$
Typology methodology
Clustering

Substations load time series

Daily characterization
- Energy E_d
- Magnitude R_{pd}
- Variability V_{pd}

Clustering \iff k-means

K?
- Dense and distant clusters
- Similarity between days
Typology methodology
MCDA

Clustering Evaluations

- $(Q_i(d))_{i \in [1,3]}$ & $d_M = \max(d)$: intra-clusters distances (to be minimized)
- $\Delta_m = \min(\Delta)$: inter-cluster distances (to be maximized)
- $cc = \min_j (R^2)$ and RMSE : days cross-correlation & differences (resp. maximized and minimized)

Conflicting criteria & Discrimination difficulties

→ MCDA algorithm (Electre1S)
Typology methodology
MCDA

Substations load time series

Daily characterization
- Energy E_d
- Magnitude R_p_d
- Variability V_p_d

Clustering
\Rightarrow k-means

Selection of k

MCDA
- Number of cluster N
- Density $Q_i(d) & d_M$
- Clusters distances Δ_m
- Similarities $cc & RMSE$

Selection of typical days in the clusters

⚠️ Selection among the days in the cluster
\Rightarrow Possibility characterize the typical day with other variables (T_{out} etc.)
Typology methodology
MCDA

Substations load time series

Daily characterization
- Energy E_d
- Magnitude R_{pd}
- Variability V_{pd}

Clustering
→ k-means

Selection of k

MCDA
- Number of cluster N
- Density $Q_i(d)$ & d_M
- Clusters distances Δ_m
- Similarities cc & RMSE

Selection of typical days in the clusters

Impact on simulation accuracy

Context
Nantes Centre Loire district heating

Typology methodology
Clustering
MCDA

Results
Typical days characterisation
Validation

Conclusion & Future works
Contents

1. Context
 - Nantes Centre Loire district heating

2. Typology methodology
 - Clustering
 - MCDA

3. Results
 - Typical days characterisation
 - Validation

4. Conclusion & Future works
Results
Typical days characterisation
Results
Typical days characterisation

Context
Nantes Centre Loire district heating

Typology methodology
Clustering
MCDA

Results
Typical days characterisation
Validation
Conclusion & Future works
Simulations with a pseudo-dynamic model

- Masse balance:
 \[\sum_{j \in \{Pr(i)\}} \dot{m}_{i,j} = \sum_{k \in \{Su(i)\}} (\dot{m}_{k,i} + \dot{m}_{i}) \]

- Thermal losses:
 \[T_{\bullet,i,j,out} = T_{\text{ext}} + (T_{\bullet,i,j,in} - T_{\text{ext}}) \exp \left(- \frac{SU}{C_p \dot{m}_{i,j}} \right) \]

- Pressure drops:
 \[\Delta H = k_{i,j} \cdot |\dot{m}_{i,j}| \]
SIMULATIONS WITH A PSEUDO-DYNAMIC MODEL

Results
Validation

Context
Nantes Centre Loire
district heating

Typology methodology
Clustering
MCDA

Results
Typical days
characterisation

Validation

Conclusion & Future
works
Results
Validation

Typology impact on inputs

Typology impact on outputs

My SMART Life
IMT Atlantique
Bretagne-Pays de la Loire
École Mines-Telecom
Contents

1. Context
 - Nantes Centre Loire district heating

2. Typology methodology
 - Clustering
 - MCDA

3. Results
 - Typical days characterisation
 - Validation

4. Conclusion & Future works
Conclusion & Future works

A ROBUST LOAD TYPOLUTION METHOD

- Based on k-means clustering method
- k is chosen through MCDA
- Typical days extracted from the database
- Validation by evaluating the impact on simulations
Simulation & optimisation

Combining data from monitoring and DH modelling:

1. Characterisation of the DH (inverse methods)
 - Heat loss coefficient
 - Heat exchangers characterisation

2. Optimisations:
 - Energy systems management
 - Energy in return pipes
 - Control laws of the secondary side
 - Supply temperature in the network

Iterative methods: gradient methods or metaheuristics

\[
0.5 \text{ [s/simu]} \times 10 \text{ [it]} \times 24 \text{ [hours]} \times 365 \text{ [days]} = 12 \text{ h [of simulation]}
\]

Need of reducing computational costs

→ Simulations from Typical Days (TD) instead of a whole Time Series (TS)? For what impact on results?
Conclusion & Future works

SIMULATION & OPTIMISATION

Combining data from monitoring and DH modelling:

1. Characterisation of the DH (inverse methods)
 - Heat loss coefficient
 - Heat exchangers characterisation

2. Optimisations:
 - Energy systems management
 - Energy in return pipes
 - Control laws of the secondary side
 - Supply temperature in the network

Iterative methods with typical days

0.5 [s/simu] × 10 [it] × 24 [hours] × 5 [typic days] = 10 min [of simulation]
Conclusion & Future works

A robust load typology method

- Based on k-means clustering method
- k chosen through MCDA
- Typical days extract from the database
- Validation by evaluating the impact on simulations

Other applications

- Complete/Replace TS of some substations
This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731297. This document reflects only the author’s view and the European Commission (Innovation and Networks Executive Agency) is not responsible for any use that may be made of the information it contains. The authors are grateful to ERENA, the operator of Nantes district heating, for their collaboration in the EU programme MySMARTLife.
Conclusion & Future works

TIMES SERIES GENERATION FROM TYPICAL DAYS

Subs₅

Subs₁₄

Context
- Nantes Centre Loire district heating
- Typology methodology
- Clustering
- MCDA

Results
- Typical days characterisation
- Validation

Conclusion & Future works
Conclusion & Future works

TIMES SERIES GENERATION FROM TYPICAL DAYS

INFLUENCE OF K IN THE TYPICAL TIMES SERIES

$\iff \quad \text{Better typical time series accuracy}$
Typical days characterisation

Conclusion & Future works

Typical days characterisation

subst5

 subst14

P_Ti [W]

10^4

10^5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P_Ji [W]

10^4

10^5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Conclusion & Future works

Times series and clustering comparisons

- **Context**
 - Nantes Centre Loire district heating
- **Typology methodology**
 - Clustering
 - MCDA
- **Results**
 - Typical days characterisation
 - Validation
- **Conclusion & Future works**

```plaintext
Conclusion & Future works
```

21

IMT Atlantique

Bretagne-Pays de la Loire
École Mines-Telecom

my SMART Life
