

Data-driven control for efficient and flexible energy use at building level

Field investigations in Denmark

Pierre J.C. Vogler-Finck, Henrik Lund Stærmose, Per Dahlgaard Pedersen

Smart Energy Systems Conference Copenhagen, 11/09/2019

Outline

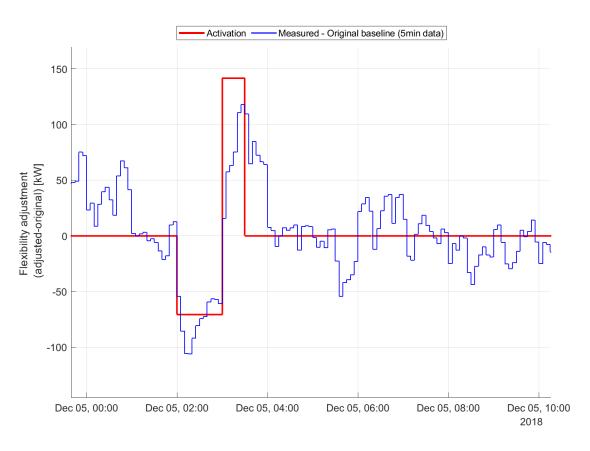
- 1- Presentation of Neogrid and its activities
- 2- PreHEAT: a heating control solution for buildings
- 3- Presentation of some use cases

Neogrid Technologies ApS

NEOGRID TECHNOLOGIES

Founded in 2009 in Aalborg (Denmark), currently 8 employees

Collaboration-oriented


- ✓ Extensive experience in research and demonstration projects in the energy sector
- ✓ Engaged in both national (Denmark) and international projects

Focus areas

- ✓ Visualisation and monitoring technology for building heating
- ✓ Data collection from 'smart' meters and IoT sensors
- ✓ Energy-efficient and energy-flexible controllers

Flexibility 'in the real world' in power systems

✓ Technology developed and demonstrated for heat-pump aggregated control.

✓ Waiting for the flexibility market to take-off (still waiting...)

-> Business needed to look at another direction

Commercial platform capability for research and demonstration

Hardware

- Gateway supporting direct access for acquisition and control via:
 - ✓ BMS systems (Modbus, Bacnet)
 - ✓ Local wireless sensor network (Wireless Mbus)
 - ✓ Custom box for direct interaction with valves of substation
- ✓ Supporting online collection of large buildings
 - ✓ Demonstrated on >1,100 measurement points per gateway
 - ✓ Low latency communication for control (<1 minute)</p>

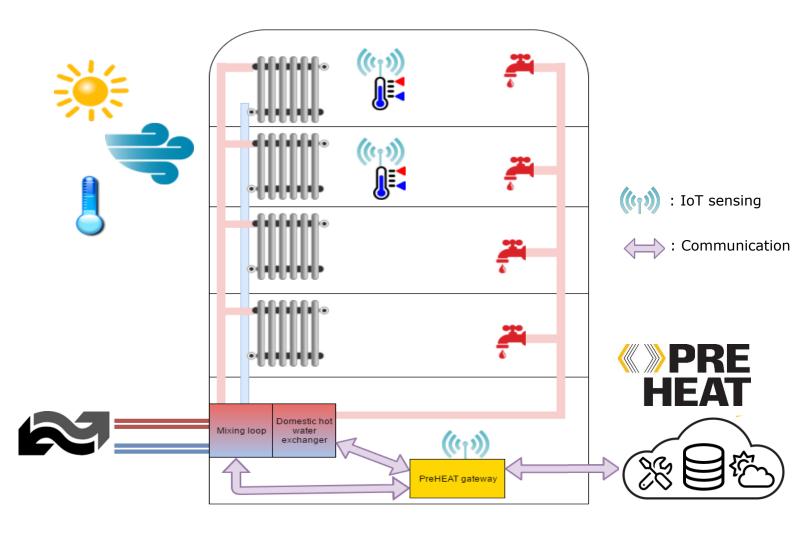
Software

- ✓ Online visualisation dashboard
- ✓ Web API for automated data exchange (https://neogrid-technologies.gitlab.io/neogrid-api/)
 - ✓ Reading historical data
 - ✓ Sending control setpoints
 - ✓ A toolbox for Matlab and Python is available
 - ✓ Demonstrated in research and demonstration environments

Neogrid's activity in the DH sector

Technology development:

- Online data acquisition and monitoring
- Data-driven control technology
- Automated analytics


Services:

- Data collection and management
- Optimised control of supply temperature at central level
- Monitoring and reporting on performance

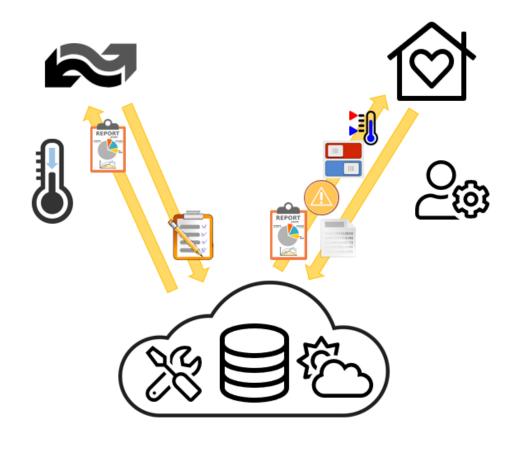
Indicators		
Years of operation in Denmark	>3	years
Number of buildings in pool	>140	
Apartment blocks	104	
Single family houses	31*	
Others (schools, offices, institutions,)	7	
Heated area covered	>260,000	m ²
Measurement points	>25,000	
Entries in timeseries database	2.2 billion	

Control is made at central level with room feedback

- Predicts the heating demand
 - Using models from historical data
 - weather dependency and forecast
 - Accounts for temperatures in critical zones

- Dynamically optimises the supply temperature
 - Ensuring comfort in critical zones
 - Reducing pipe losses

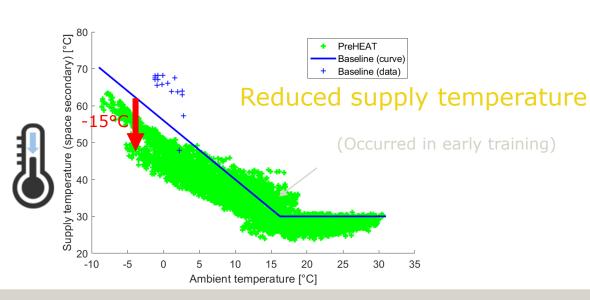
Providing services to different stakeholders

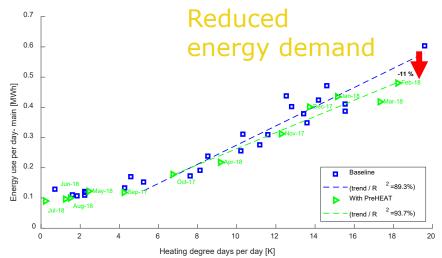

For building owner/occupants

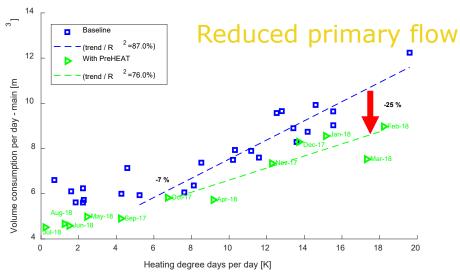
NEOGRID TECHNOLOGIES

- Condition monitoring (regular reporting and live view)
 - Energy usage
 - Indoor climate
 - > State of the installation and substation
- Fault-detection (building operator is contacted)
 - > Abnormally high consumption
 - Bad cooling in heat exchangers/loops
 - > Defect valves and other components in technical rooms
 - Cost of fault (and ROI of fixing) can be quantified
- Remote tuning of controller settings

For DH operators


- Delivering demand forecasts (at building and aggregate level)
- Unlocking demand response from buildings




Improved cooling and energy efficiency in a renovated apartment block

Example: [MA14 - Aalborg]		
Туре	Apartment block	
Construction	1960s (renovated)	
Heated area	1 132 m ²	
Energy class	С	
Total heat	90 MWh/yr.	
usage	$(80 \text{ kWh/m}^2/\text{yr.})$	

Improved energy efficiency in a pool of apartment blocks

Example: [GD -Taastrup]		
Туре	Apartment blocks	
Construction	1970-80s	
Heated area	33 128 m ²	
Energy class	(?)	
Total heat	(?)	
usage		

Cooling of DH water improved by 2-4 °C

Several malfunctions identified from the data and reported to building operator.

Things aren't always that simple

Example: [NG19 - Aalborg]		
Type	Apartment block	
Construction	1920s	
Heated area	2 003 m ²	
Energy class	F	
Total heat usage	152 MWh/yr.	
	$(76 \text{ kWh/m}^2/\text{yr.})$	

Control of heating in an office building with complex HVAC system

IntelByg project with Bravida, and financed by the Danish ministry of energy

Example: [L21 – Aalborg]		
Туре	Office building	
Construction	2005	
Heated area	1 851 m ²	
Energy class	(?)	
Total heat usage	~85 MWh/yr. (46 kWh/m²/yr.)	
Ventilation systems	2 (with heat recovery, hydronic heating & cooling)	
Heating loops	4 (2 to ventilation, 1 floor, 1 radiator, 1 fan coil)	

Gateway

- integrated in Bacnet-based BMS
- Collecting real time data from 792 points
- Updating setpoints in real time control

Currently

- Controlling the radiator heating
- Investigating multizone control-oriented modelling
- Fault detection implemented

Aim

- Integrated multizone model predictive controller of HVAC system
- Automated fault detection

Conclusions

- Commercial technology for robust online cloud-based building data collection is available, including online control technology.
- Supply temperature in building heating can often be optimised for more efficiency.
- Documentation of savings is difficult, for ranges of ∼10% savings.
- Energy efficiency is a way to get into the buildings, and cloud-based controllers infrastructure can support demand response at low extra cost.
- Flexibility enabling technology is ready and waiting, but there are major barriers to commercial delivery :
 - lack of clear quantifications of value of flexibility for system operators
 - absence of functioning appropriate markets.

Neogrid Technologies ApS

Niels Jernes vej 10, Aalborg Øst, Denmark / www.neogrid.dk

Contact:

Pierre J.C. Vogler-Finck (R&D scientist) +45 4280 0898 / pvf@neogrid.dk / Skype: pvf.neogrid

Selected current projects

HEAT 4.0 – Digitally supported district heating (https://energiforskning.dk/node/9356)

- ✓ Control to support integrated operation of DH systems
- ✓ Optimised heating control at central and zone level in houses and offices

FED - Flexible Energy Denmark (https://energiforskning.dk/node/9406)

- ✓ Data-driven control to provide energy flexibility in Living Labs with a market environment
- ✓ Optimised control of residential building substations and local area supply in a DH system

SmartCE2H - Smart citizen-centered local electricity to heat systems (https://energiforskning.dk/node/9297)

- ✓ Optimised control of large booster heat pumps to local areas in DH systems
- ✓ Collaborative control of building substations in local areas with booster heat pumps
- ✓ Optimised control of booster heat-pumps at building level for DHW production