

Automated building modelling based on Smart-Meter Monitoring Data

Andreas Melillo, Jörg Worlitschek, <u>Philipp Schütz</u> Lucerne University of Applied Science and Arts <u>philipp.schuetz@hslu.ch</u>

Why to care about building models?

Energy grid Residential heating system

Exemplary applications:

Utilities:

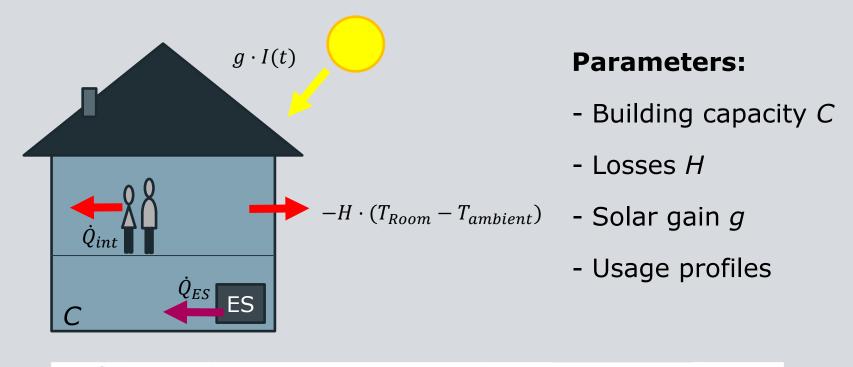
- Load prediction
- Extension planning

End-users:

- Performance indicator
- Retrofitting planning

- System models

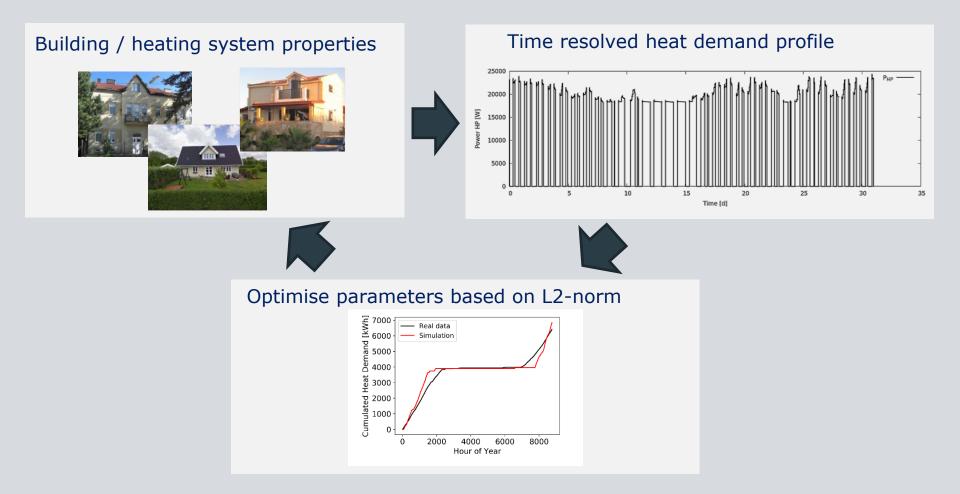
Policy makers:



Hochschule Luzern

Which building model?

Energy-balance model for dynamics of room temperature

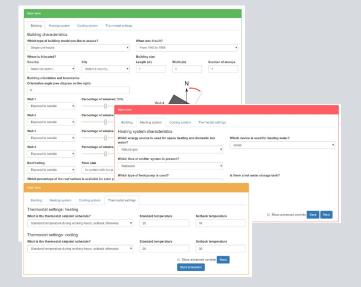


$$C\frac{\partial T_{room}}{\partial t} = -H\left(T_{room} - T_{ambient}\right) + gI + \dot{Q}_{internal} + \dot{Q}_{Es}$$

Adapted from H. Burmeister et al, Energy and Buildings 28, p.167-177, 1998.

How can we identify the building parameters?

Heat4Cool - Retrosim

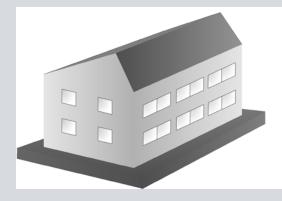



Retrofitting recommender tool

Simple User Interface

Simulator

Assessment of different retrofit options


5

Does it work?

Self-consistency check:

Are parameters of reference simulations correctly reproduced?

Reference Buildings:

Single-family houses (SFH) in Zurich, CH

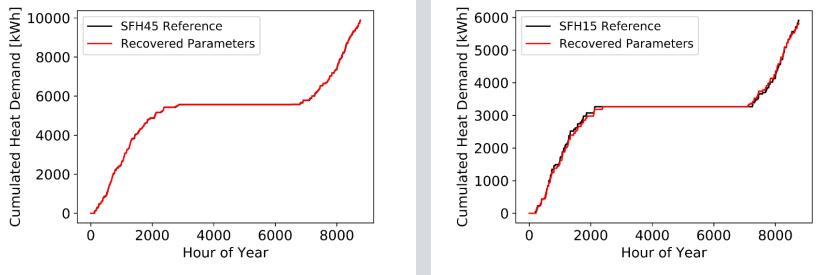
SFH15: Model for Minergy building 15 kWh/m²/a space heating demand
SFH45: Modern Swiss building 45 kWh/m²/a space heating demand
SFH100: Retrofitted building 100 kWh/m²/a space heating demand

Adapted from R. Dott, et al. The reference framework for system simulations of IEA SHC Task 44, HPP Anex 38, Part B, 2013

THERMAL ENERGY STORAGE

Reproduction of heating demand time series

Cumulated space heating demand for SFH100


- Total annual space heating demand reproduced up to 4 kWh / 0.01%
- Undiscernible profiles for space heating demand of SFH100

What about the other reference buildings?

SFH45: Modern Building 10000 6000 SFH45 Reference **Recovered Parameters**

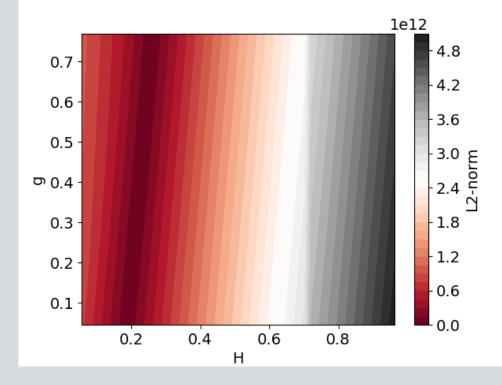
SFH15: Minergy Building

Observations:

- Self-consistency check passed also for other building types -
- Total annual space heating demand well reproduced -
- Minor deviations for Minergy-type building

How are the building properties reproduced?

Deviations of extracted properties


Parameter	SFH100	SFH45	SFH15
Losses H	-1%	+1%	- 17 %
Solar gain <i>g</i>	-1%	+3 %	- 23 %
Capacity C	+8%	- 25 %	- 12 %

Observations:

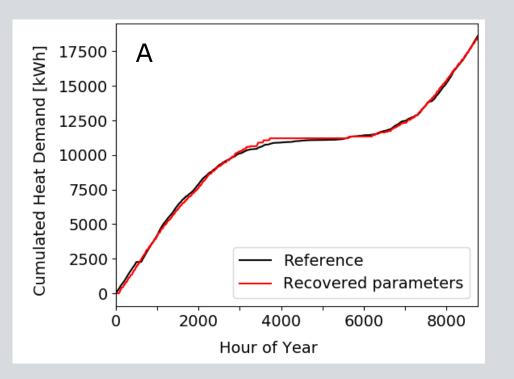
- Losses and solar gain of SFH100 and SFH45 accurately reproduced
- Capacity deviates strongly
- Parameters of Minenergy building consistently underestimated

How could we explain the deviations?

Deviations of simulated and actual heat demand time series

Observation:

Many pairs of solar gain g and losses H yield comparable values of the metric


ww.hslu.ch/te

Hochschule Luzern

Does it also work for real-world buildings?

THERMAL ENERGY STORAGE

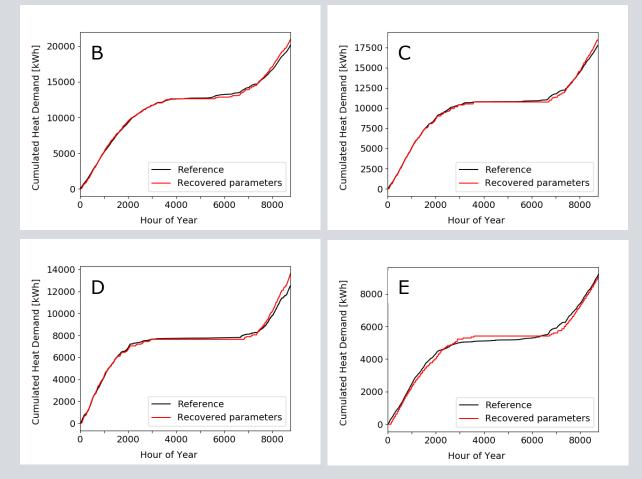
Results real-world building in UK

Data source:

Monitoring campaign from Renewable heat premium payment scheme (RHPP)

Old building (<1919) with 4+ rooms and ground source HP

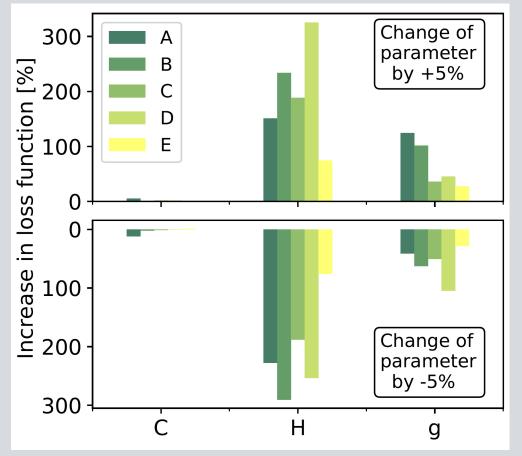
Observation:


Good reproduction of heat demand time series

Data from Lowe, R., Department of Energy and Climate Change. (2017). *Renewable Heat Premium Payment Scheme: Heat Pump Monitoring: Cleaned Data, 2013-2015.* [data collection]. UK Data Service. SN: 8151

Further results for RHPP data set

Results for 4 additional real-world buildings

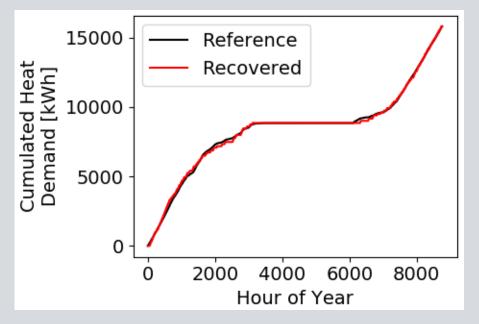

Observation:

Good reproduction of total annual space heating demand and demand profile

ID	Deviation
А	-1 %
В	+4 %
С	+5 %
D	+9 %
Е	-2 %

Sensitivity of parameters on loss function

Question:


How much changes the L2-norm if building parameters are changes by +/- 5 %?

Observation:

- Losses have by far the biggest impact
- Capacity plays only a minor role
- Impact depends only slightly on considered building

Application on real-world smart meter data

Data set:

Real building in Bern (CH) Power profile of heat pump

Observation:

Good reproduction of annual heat demand and profile

Approach:

- Download temperature profiles of matching period from Meteosuisse
- Transform power to generated heat flux by COP table of heat pump

Conclusion and Outlook

Conclusions

- Modelling of a building from Smart Meter data is possible
- Dynamic behaviour can be reproduced accurately
- Extracted building properties for test cases match except for buildings with very low demand

Outlook

- Extraction of heat pump profile from aggregated measurement of whole building
- Comparison of extracted building parameters for real buildings

16 Competence Center Thermal Energy Storage - SES 2019

Wednesday, 25 September 2019

Hochschule Luzern

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Acknowledgements

Swiss Federal Office of Energy SFOE

Eidgenössisches Departement für Wirtschaft, Bildung und Forschung WBF Staatssekretariat für Bildung, **Forschung und Innovation SBFI**

Innosuisse – Swiss Innovation Agency

Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

Swiss Competence Centers for Energy Research

