LOW TEMPERATURE DISTRICT HEATING NETWORK ENERGY CASCADE CONNECTION TO RETURN LINE OF HIGH TEMPERATURE DISTRICT HEATING NETWORK

I.Krupenski, A.Volkova, A.Hlebnikov, A.Ledvanov, V.Mašatin, E.Latõšov
Tallinn University of Technology, HeatConsult OÜ, Utilitas Tallinn AS

25.09.2019
DISTRICT HEATING IN TALLINN, ESTONIA

- Population ca 430 000
- District Heating network from 1956
- Length: 430 km
- ca 70% share of DH
- ca 40% pre-insulated pipes, other in concrete channels
- Age of DH network: 24,6 years
- Heat losses: 13,8%
- Temperature graphic: 115 °C / 70 °C
- District Cooling in development stage
REAL OBJECT – LAHEKALDA DISTRICT

- Area: 17 ha
- Development 180,000 m²
- 37 buildings (mainly flat houses)
- Floor heating + hot water
- Heating capacity 15 MW
LOCATION OF LAHEKALDA DISTRICT

Low temperature district heating network energy cascade connection to return line of high temperature district heating network
PURPOSED LTDH SOLUTION

- Main DH network: HTDH
- Local DH network in Lahekaldna area: LTDH
- HTDH: 115 °C / 70 °C, average temperature of return line 40-50 °C
- LTDH: 65 °C / 35 °C
- Two direct connection options compared:
 - Mixing shunt (return flow from consumer is mixed with supply of DH)
 - Shunt with pumping station (return flow of HTDH is used as a supply flow for LTDH and if needed, additional flow of HTDH supply pipeline is added)
- Techno-economical aspects of these connection options were analysed (heat consumption, electricity consumption, water flow and pressure, additional investments and costs of heating)
- Return temperature decreases in HTDH, caused by LTDH network integration
EXPERIENCE IN OTHER COUNTRIES

- An LTDHN case study, where heat is supplied from the return pipe of a large DH combined with solar collectors.
- Analysis of the case study, where the temperature of return water is increased using a heat pump in order to be subsequently used in LTDH. The economic aspects of this type of solution, including the tariff system, have been examined for Vienna, Austria.
- These studies have shown that there is a prospect of using this approach for connecting well-established DH systems to small LTDHN.
- Two arrangements have already been tested successfully through pilot projects in Denmark: mixing shunt and 3-pipe connection shunt.
- Two types of connections were analyzed: one-stage heat exchanger that uses a mixture of the main DHS return and supply flows and two-stage heat exchanger that is fed by both the main DHS return and supply flows.
EXPERIENCE IN OTHER COUNTRIES

- The economic aspects of this type of solution, including the tariff system, have been examined for Vienna, Austria.
- Two arrangements have already been tested successfully through pilot projects in Denmark.
- The first demonstration project for indirect connection was launched in the UK, Nottingham.
- An LTDHN case study, where heat is supplied from the return pipe of a large DH combined with solar collectors in Chemnitz, Germany.
- Modelling: analysis of the case study, where the temperature of return water is increased using a heat pump in order to be subsequently used in LTDH (Seoul, Korea).

These studies have shown that there is a prospect of using this approach for connecting well-established DH systems to small LTDHN.
PERFORMED TWO DIFFERENT DESIGN PROJECTS

Low temperature district heating network energy cascade connection to return line of high temperature district heating network
CALCULATIONS (IMPACT ON HTDH NETWORK)

- Average ambient temperature (during heating season): +2,3 °C
- Temperature of supply pipeline, HTDH: +84
- Temperature of return pipeline, HTDH: +35
- Temperature of supply/return pipelines, LTDH: 37 °C / 26 °C
- Parameters of HTDH network (with average ambient temperature):
 - Capacity: 123,5 MW
 - DH water flow: 874,9 kg/s
- **Temperature of return line of HTDH will decrease by 0,39 °C** (from 49,7 °C to 49,31 °C)
CALCULATIONS OF HEAT LOSSES

- Initial data:
 - Heating period 260 days / year
 - Hot water every day
 - Average air temperature for heating period: -1.5 °C
 - Average air temperature for non heating period: 14 °C
 - Price of DH in Tallinn: 57.12 EUR / MWh

- Disadvantages
 - Small increase of pipe diameter
 - Additional pumping inside LTDH network

- Advantages
 - Smaller length of pipes (absence of compensators)
 - Smaller insulation thickness

Annual heat losses (MWh/year)

- LTDH: 205.23
- HTDH: 236.21
INPUT DATA FOR ECONOMICAL CALCULATIONS

- Additional costs
 - Shunt with pumping station (investment) + annual electricity supply + maintenance
 - Heating substations (bigger heat exchangers; Increase of heating substations price less than 0,1% of building price)
 - DH network pipe sizes

- Savings
 - HTDH return pipeline temperature decrease (impacts efficiency of CHP)
 - Heat losses

- Impact on all parties
 - Developer (pays for construction of DH network + heating substations)
 - Consumer (pays for heating energy based on consumption in MWh)
 - DH operator (investments in pumping station)
WINNERS AND LOSERS

<table>
<thead>
<tr>
<th>Developer</th>
<th>Consumer</th>
<th>DH operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional investments: LTDHN in comparing with HTDN: 50 000 EUR</td>
<td>No benefits (tariff in Estonia): consumer pays for MWh</td>
<td>Benefits: return temperature reduction 145 000 EUR</td>
</tr>
<tr>
<td>Bigger heat exchangers: 20 000 EUR</td>
<td></td>
<td>Additional investments: pumping station</td>
</tr>
<tr>
<td>Benifit: In case developer sells heat energy to consumer - lower heat losses</td>
<td>Benifit: in case of bonus tariff system - lower tariff for consumed heat</td>
<td>Benifit: in case DH operator sells to consumer - lower heat losses</td>
</tr>
</tbody>
</table>

Discounted cashback for solution implementation

![Discounted cashback graph](image-url)

- **EUR**
- **project years**

Low temperature district heating network energy cascade connection to return line of high temperature district heating network
CONCLUSIONS

- Existing situation
 - No interest for developer (bigger investments) and consumer (same DH price)
 - Interest for DH operator (payback time 1,5 years)

- Possible win-win-win situation
 - Changing the tariff system (cheaper price for consumer) + smaller primary energy factor
 - Part of investment cost for construction of DH pipelines and heating substations covered by DH operator (the investments for developer would not be bigger compared to HTDH)
 - Explain to society why LTDH is needed and useful
THANK YOU FOR YOUR ATTENTION!

QUESTIONS?