5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019 #SESAAU2019

A smart controller for small-scale district heating and cooling networks: development and testing

Andrea De Lorenzi, Agostino Gambarotta, Mirko Morini, Michele Rossi, Costanza Saletti

Department of Engineering and Architecture, University of Parma

costanza.saletti@unipr.it

Powered by

Heating and Cooling networks efficiently distribute thermal energy at **different scales**

There are significant advantages also at **small-scale level** compared to single boilers...

...but, together with **opportunities**, these multi-source networks introduced new **challenges**

Today, energy systems are managed through day-ahead schedule, rule-based or, in the best of cases, adaptive strategies

But, in order to face **extreme** climate conditions and to achieve optimal management of the system, **predictive control** strategies are necessary

Model Predictive Control uses a model to predict the **future** behavior of the system and compute **optimal** control sequence

Gambarotta et al. Energy Procedia 2019;158:2896-2901

Each time-step, time horizon is moved one step forward, model variables are updated and optimization is repeated (receding time horizon)

Gambarotta et al. Energy Procedia 2019;158:2896-2901

Each optimization problem is solved through a **Dynamic Programming algorithm** previously developed

Gambarotta et al. Energy Procedia 2019;158:2896-2901

A **Model-in-the-Loop** platform is used to test and compare different control strategies

A conventional controller (baseline) and the innovative **Model**-based **Predictive** controller are implemented

The **detailed model** of the real system is built with the components of a library and used as test bench

The **detailed model** of the real system is built with the components of a library and used as test bench

The **standard components** of energy systems has been modeled...

Co-funded by Regione Emilia-Romagna through the European Regional Development Fund POR-FESR 2014-2020 (CUP E38I16000130007)

...and collected in a **library** with a **modular approach** ideal for the application to **different layouts**

Cadau et al. Energy Procedia 2018;148:352-359

The **preliminary test** has been performed on the heat distribution network of a single end-user

This first case study has shown promising results in terms of **energy efficiency**

This first case study has shown promising results in terms of **energy efficiency**

The controller has been applied to more complex energy systems according to a **multi-agent hierarchical strategy**

In each branch, an **MPC** controller minimizes the energy required for each user...

...while another MPC controller optimizes the **production** side starting from the optimal demands calculated downstream

The case study is a district heating network supplied by an **ORC** and a **thermal energy storage** tank

The case study is a district heating network supplied by an **ORC** and a **thermal energy storage** tank

After its development and demonstration, the controller has been exploited in real case studies...

...demonstrating its **effectiveness** and **reducing** the **energy consumption** substantially

...demonstrating its **effectiveness** and **reducing** the **energy consumption** substantially

Our project **DISTRHEAT** proposes a scalable MPC for district heating networks and will start at the end of the year

DISTRHEAT \implies Digital Intelligent and Scalable conTrol for Renewables in HEAting neTworks

Duration: 01/11/2019 – 31/10/2022

Partners:

In future developments, the presented approach will be replicated in **multi-source smart energy networks**

BACK-UP SLIDES

The MPC controller is implemented on a standard workstation and the communication is set up from sensors to actuators

