Analysis of Smart Energy System approach in local Alpine regions a case study in Northern Italy

S. Bellocchi^a, G. Guidi^b, <u>R. De Iulio^b</u>, M. Manno^a, B. Nastasi^c, M. Noussan^d, M.G. Prina^e, R. Roberto^b

^a University of Rome Tor Vergata

^b ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development

^c Sapienza University of Rome

^d FEEM - Fondazione Eni Enrico Mattei

^e EURAC Research – European Academy of Bozen-Bolzano

Powered by

Summary

- Introduction: Valle d'Aosta case study*
- Low-carbon future scenarios
- Results
 - Techno-economic analysis
 - Optimization analysis (CO₂ vs Cost)
- Conclusions
- Future developments

*The analysis is performed in the framework of IMEAS Project, co-financed by the European Union via Interreg Alpine Space

Introduction: Valle d'Aosta case study

Hydro power production exceeds more than 3 times the electricity demand

Electrification

Introduction: Valle d'Aosta case study

Research Question:

 Investigation of low-carbon scenarios with the use of local resources, optimizing the total cost of the energy system and CO₂ emissions reduction.

Methodology

- <u>Techno-economic analysis</u> using *EnergyPLAN*.
- <u>Optimization analysis</u> using genetic algorithm.

Low-carbon future scenarios

Technical assumptions

Increase of Heat Pumps up to 60%, phase-out of oil boilers

Shift from oil to biofuels consumption up to 50%

Shift from **oil to natural gas** consumption up to 65%

Exploitation of local dung wastes to produce biogas

<u>[]]</u>

Penetration of electric vehicles up to 80% of light-duty fleet

Substitution of **diesel heavy trucks with fuel cell ones** up to 30%

5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019 #SESAAU2019 HP-ref HP-Low HP-Mid HP-High

0%EV

20%EV

50%EV

80%EV

Low-carbon future scenarios

Economic assumptions:

- Reference year: 2050
- Cost of all the technologies (excl. transport): Cost database, output of HRE4 (Heat Roadmap Europe 4) project
- Conventional cars and electric vehicles prices are derived from UNRAE database
- Diesel trucks and H₂ trucks prices are extracted from a publication* of Climate Technology Centre and Network

Vehicles	Cost [k€]
Conventional car	21.64
Electric vehicle	32.75
Diesel heavy truck	78.00
Fuel Cell heavy truck	115.00

*Heavy-duty trucks- Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities, <u>https://www.ctc-n.org/resources/heavy-duty-trucks-development-business-cases-fuel-cells-and-hydrogen-applications-regions</u>

Results: techo-economic analysis

CO₂ emissions

#SESAAU2019

Results: techo-economic analysis

100% 1.600€ 90% 1.400€ -25% 80% ² emission reduction 1.200€ 70% -40% Total annual cost [M€] 60% 1.000€ 50% 800€ -65% 40% 600€ 30% Ö 400€ 20% 200€ 10% € 0% -0% EV/HP-ref 10% 0% EV/HP-roid 20% EV/HP-ref 12% 20% EV/HP-roid 20% EV/HP-roid 50% EV/HP-roid 50% EV/HP-roid 20% EV/HP-roid 20 Fixed operation costs Variable costs Investment costs CO2 emission variation **5th International Conference on Smart Energy Systems**

Total annual cost and CO₂ emission reduction

- Optimization performed using genetic algorithm (NSGA), a MOEA Multi-Objective Evolutionary Algorithm [MATLAB]
- Objective: minimize annual costs and CO₂ emissions

Decision variables:

- petrol LDV consumption;
- diesel LDV consumption;
- number of diesel HDV;
- oil boilers consumption;
- NG boilers consumption;
- ➢ HP heat demand.

Cases:

- Only Transport (all the other sectors as reference scenario)
- Transport+Heating A (industry and agriculture sectors as reference scenario)
- Transport+Heating B (industry and agriculture as HP-High scenario)

Pareto fronts

#SESAAU2019

#SESAAU2019

Conclusions

- The technical analysis illustrates:
 - 45% CO₂ reduction acting on the heating, industry and agriculture sectors;
 - 25% CO₂ reduction acting only on the transport sector;
 - 65% CO₂ reduction in HP-High/80%EV scenario;
- Optimized scenarios are characterized by high-share of heat pumps because it does not affect the total annual cost and it allows to reduce CO₂ emission
- The electricity importation in high-electrified scenarios has been identified.

Future developments

- Evaluation for integration of electricity storages in order to improve the Sector Coupling (Power-to-X) and the Smart Energy System Approach.
- Further analysis about **CO₂ and other emissions**
- **Optimization analysis** may be **enhanced** introducing further decision variables in other sectors.

5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019 #SESAAU2019

Thank you for your kind attention!

Powered by

N (6)

environment

DISTRICT ENERGY IN CITIES

INITIATIVE

Fonden Energi- & Miljødata www.emdfonden.dk

Supporting information

- Valle d'Aosta 2015
- Low-carbon scenarios assumptions
- Surplus of RES electricity
- Annual electricity importation

Valle d'Aosta 2015

^{*}Includes electricity production and distribution losses

* Source: "Exploring potential synergies among energy sectors in alpine regions: the case of Valle d'Aosta" presentation in Proceedings of ECOS 2019 - The 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental impact of Energy Systems – June 23-28, 2019 – Wroclaw, Poland

5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019

#SESAAU2019

Valle d'Aosta 2015

Transport sector fuel demand [GWh] - 2015

Tashaalasa	Shar	e of total h	A		
lechnology	2015-ref	HP-Low	HP-Mid	HP-High	- Assumptions
Heat pump	2.0%	10.0%	30.0%	60.0%	increase up to 60%
Oil boiler	46.4%	15.0%	10.0%	0.0%	gradual phase-out
Biomass boiler	24.0%	24.0%	24.0%	24.0%	constant
District heating	3.9%	8.6%	7.8%	6.5%	slight decrease of fossil DH
Natural gas boiler	23.7%	42.3%	28.2%	9.5%	remaining part

Other assumptions:

- Energy efficiency in buildings: heat demand -10%;
- Heat pumps **COP +25%** from 2.5 to 3.1;
- **DH demand** initially grow (LOW scenario) due to a **new CHP plant** in the area of Cervinia that is currently in exercise

Sector	Fuel	Fuel consumption [GWh]				Assumptions
		2015-ref	HP-Low	HP-Mid	HP-High	
Industry	Oil	145.9	114.3	82.7	51.1	Reduction up to 65%
Industry	Natural Gas	423.7	455.3	486.9	518.5	Shift from oil
Industry	Biomass	13.9	13.9	13.9	13.9	Constant
Agriculture	Oil	19.9	16.6	13.3	10.0	Reduction up to 50%
Agriculture	Biofuel	0.1	3.4	6.8	10.1	Shift from oil

Other assumptions:

 Biogas production, exploiting dung waste and other farming wastes, increases gradually until 46.76 GWh/year in the high scenario (upgraded to methane – to the grid)

Vehicle type	Share of total Light duty fleet				Electricity and fuel consumption [GWh]			
	0%EV	20%EV	50%EV	80%EV	0%EV	20%EV	50%EV	80%EV
Electric LDV	0%	20%	50%	80%	0.0	36.5	91.1	145.8
Petrol LDV	50%	65%	40%	15%	304.0	387.6	238.8	90.2
Diesel LDV	50%	15%	10%	5%	317.1	79.7	53.1	26.6

Vehicle type	Shar	e of total	Heavy dut	Fuel consumption [GWh]					
	0%EV	20%EV	50%EV	80%EV	0%EV	20%EV	50%EV	80%EV	
Diesel HDV	100%	90%	80%	70%	462.9	328.6	292.1	255.6	
H2 HDV	0%	10%	20%	30%	0.0	35.2	70.5	105.7	

Transport vehicle consumption [kWh/100km]							
Vahialaa	Scenarios						
venicies	0%EV	20%EV	50%EV	80%EV			
Diesel heavy trucks ¹	251.0	198.0	198.0	198.0			
Fuel cell heavy trucks ¹	211.0	191.0	191.0	191.0			
Petrol cars ²	57.5	51.3	51.3	51.3			
Diesel cars ²	50.0	45.7	45.7	45.7			
Electric Vehicles ³	18.4	15.7	15.7	15.7			

¹ Climate Centre and Network, Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities.

² Fuel economy for conventional cars derived from Unione Petrolifera current and projected estimations.

³ EV technical specifications derived from a weighted average from the actual national fleet composition.

Low-carbon scenarios: 16 combinations

	0%EV	20%EV	50%EV	80%EV
HP-ref	HP-ref/0%EV	2015-ref/20%EV	2015-ref/50%EV	2015-ref/80%EV
HP-Low	HP-Low/0%EV	HP-Low/20%EV	HP-Low/50%EV	HP-Low/80%EV
HP-Mid	HP-Mid/0%EV	HP-Mid/20%EV	HP-Mid/50%EV	HP-Mid/80%EV
HP-High	HP-High/0%EV	HP-High/20%EV	HP-High/50%EV	HP-High/80%EV

RES surplus

Local use of renewable electricity surplus

Annual importation

HP-High/80%EV Electricity import: 86 GWh

