Deep decarbonisation of the EU industry -A model-based assessment of alternative pathways

Tobias Fleiter,

with contributions from Matthias Rehfeldt, Andrea Herbst, Marlene Arens

Fraunhofer Institute for Systems and Innovation Research

Smart Energy Systems Conference, September 10 2019, Copenhagen

AGENDA

- 1. Background: Industry decarbonisation and innovations
- 2. Alternative scenarios for deep decarbonisation
- 3. A Paris-compatible industry sector: 95% reduction scenario
- 4. Conclusions

Background: Industry decarbonisation & innovations

Today's available technologies are not sufficient for decarbonisation

Innovative low-carbon technologies are needed

Many process innovations are under development

Source: Towards the EU ETS Innovation fund workshops (online available)

Alternative industry sector decarbonisation scenarios

8 Scenarios are defined and simulated

	Scenario name	Main scenario philosophy			
no inno-vations	1) Ref	Current trends & policies			
	2) BAT	Today's best available technologies			
	3a) CCS	~ -80% GHG, focus on CCS			
30%. (ref. 1990) ons with TRL >4	3b) Clean gas	~ -80% GHG, focus on renewable hydrogen and synthetic methane			
	3c) Bioeconomy & circular economy	~ -80% GHG, focus on biomass as fuel and feedstock and circular economy.			
uction > innovati	3d) Electrification	~ -80% GHG, focus on direct use of electricity			
HG redu cluding i	4a) "Balanced mix" -80%	~ -80% GHG, balanced mix informed by costs and potentials			
0 <u>-</u>	4b) "Balanced mix" -95%	~ -95% GHG, Balanced mix informed by costs and potentials			

The FORECAST model combines 6 sub-

modules More information: https://www.forecast-model.eu/

Major remaining emission sources are coal, process emissions and gas

GHG emissions by scenario and source EU28

- Coal and fuel oil are substantially reduced in most decarbonisation scenarios
- Process emissions, natural gas and to less extent coal are remaining emission sources in 2050

A 95% reduction scenario for the EU industry sector

95% GHG reduction possible with mix of measures

Scenario 4b Mix95- GHG emissions by source, EU28

- GHG reduction of 95% (vs 1990) and 92% (vs 2015)
 - Remaining emissions mainly in processes
- CCS in cement and lime enters in 2030

A fossil-free final energy demand in 2050

Scenario 4b Mix95 – final energy demand, EU28

Scenario 4b Mix95

□Hydrogen (feedstock) ■Biomass (feedstock) Natural gas (feedstock) ■Naphtha (feedstock) ■Synthetic methane ■Hydrogen Biomass ■ Other RES ■Waste non-RES ■ Solar energy ■ Other fossil ■Natural gas Electricity District heating

Ambient heat

349 TWh demand for synthethic methane and 700 TWh for H2 in 2050

- **Direct electricity** demand increases from 1041 TWh in 2015 to 1550 TWh in 2050
- Hydrogen (480 TWh) and synthetic methane (370 TWh) gain high shares
- **Fossil fuels** are (nearly) completely **phased out**

(Renewable) Electricity demand is tripling

MAIN CHANGES BY SECTOR BY 2050

Mitigation option Sector	Integrated process improvement	Fuel switch	CCS	Recycling and re-use	Material efficiency and substitution	
Iron and steel	BAT + Near Net shape casting	H-DR, plasma, electroysis steel 100% replace BOF-steel	-	Scrap-based EAF (40->77%) for new products	Substitution by wood; Higher material efficiency; Reinforced steel	
Basic chemicals	BAT + Chlorine oxygene depolarized cathode Selective membranes	Electric boilers, clean gas; H2 for ethylene, ammonia, methanol (100%)	-	Ambitious Plastics recycling	Plastics replaced by bio-based materials, reduced fertilizer demand	
Cement and lime	BAT + Low-carbon cements 100% replace OPC; minimum clinker use	Clean gas co-firing	ean gas co-firing CCS for lime and clinker		Efficient concrete use, concrete substitutes, use of low-clinker concretes	
Glass and ceramics	BAT + Oxy fuel, excess heat use	Electric melting (80%), clean gas	-	More re-use, inccrease in flat glass recycling	More efficient glass use	
Pulp and paper	BAT + Innovative paper drying, enzymes, black liequor gasification	Electric boilers, biomass, clean gas?	-	Maximum paper recycling and re-use	Improved material efficiency	
Refineries	BAT	Electricity, clean gas	CCS	-	Demand-side driven	

95% scenario requires fast and complete diffusion of low-carbon process innovations

Assumptions

- Market entry in ~2030
- Reaching saturation in 2050
- Requires replacement of entire capital stock within only 20 years
- Technologies need to be ready for fast market introduction by 2030

Summary: Innovations facilitate decarbonisation of EU industry

Is the EU ETS sufficient to achieve deep decarbonisation of industry?

- Phase 4 needs to make the process innovations ready for large-scale market entry in 2030 latest
- The EU ETS needs to make new solutions cost-effective, e.g. technologies with high operational costs due to hydrogen or electricity use
- The ETS needs to generate sufficient trust to allows for billion euros investments to take place
- Innovations in material efficiency and circular economy require effective price signals along the entire value chain

Contact: Tobias.Fleiter@isi.fhg.de

Thank you for your attention!

Download report and data:

Fleiter, T.; Herbst, A.; Rehfeldt, M.; Arens, M. (2019): Industrial Innovation: Pathways to deep decarbonisation of Industry. Part 2: Scenario analysis and pathways to deep decarbonisation. ICF and Fraunhofer ISI. https://www.isi.fraunhofer.de/de/competencecenter/energietechnologienenergiesysteme/projekte/pathways.html#tabpanel-3

The methodology combines multiple data sources

Example scenario definition Iron and steel

Mitigation option Scenario name	Integrated process improvement	Fuel switch	ccs	Recycling and re- use	Material efficiency and substitution	
1) REF	Incremental efficiency improvements	Fuel switch driven by prices	No CCS	Slow increase according to current trends	No substantial improvement	
2) BAT	Fast deployment of BAT efficiency	Fuel switch driven by prices	No CCS	Faster increase EAF: Used for construction steel, others	= 1)	
3a) CCS	Energy efficiency innovations > TRL4	Fuel switch driven by prices	Post-combustion CCS	= 2)	=1)	
3b) CleanGas	 Near Net shape casting Top-gas 	Hydrogen based direct reduction (H-DR) (80%), clean gas	No CCS			
3c) BioCycle (Bioeconomy & circular economy)	recycling	Biomass co-firing	No CCS	High quality EAF allows higher shares for e.g. flat steel products	Steel substitution by biomass-based products; Higher material efficiency, Reinforced steel	
3d) Electric		Electrolysis steel (80%)	No CCS	= 2)	=1)	
4a) Mix 80%		H-DR, plasma, electrolysis steel (80%)	No CCS	= 3c	= 3c	
4b) Mix 95%		H-DR, plasma, electrolysis steel (100%)	No CCS	= 3c	= 3c	

3 scenarios are simulated with bottom-up model FORECAST

Scenario definition									
Mitigation options	REF	TRANS-CCS	TRANS-IPT						
Energy efficiency	According to current policy framework and historical trends.	Faster diffusion of incremental process improvements (BAT & INNOV ≥TRL 5).	= TRANS-CCS + selected radical process innovations (INNOV ≥TRL 5)						
Fuel switch	Fuel switching driven by energy and CO ₂ -prices	Financial support for Fuel switching to biomass and PtH	= TRANS-CCS + Higher financial support for biomass and PtH						
ccs	-	CCS for major processes	-						
Recycling and re-use	Slow increase in recycling rates based on historical trends.	Faster increase in recycling (e.g. steel, aluminium, paper).	= TRANS-CCS						
Material efficiency and substitution	Based on historic trends.	Increase in material efficiency & substitution.	= TRANS-CCS						

- Bottom-up simulation •
- High technology detail •
- Country level •
- **Policy instruments** •

Scenario TRANS-IPT requires fundamental change in process technologies

Assumptions

- Market entry in 2030
- Reaching saturation in 2050
- Requires replacement of entire capital stock within only 20 years
- Technologies need to be ready for fast market introduction by 2030

Industry GHG emissions about 19% of EU total in 2015

Industry sector:

- Industry in 2015 about 19 % of total **GHG** emissions
- 37% reduction from 1990 to 2015 in industry sector
 - **EU Low-Carbon** Roadmap from 2011 requires emission reduction of 83-87% by 2050 for all sectors

Comparison: Relevance of technologies varies across studies for Germany

Comparison of selected industry decarbonisation studies for Germany

Scenario	GHG reduction	Energy efficiency	Biomass	Hłd	9ŧd	SDD	New processes	Circular economy	Material efficiency & substitution
BMUB KS95	-99%								
UBA THGND	-95%								
BDI 95%Pfad	-95%								
BMWi Langfrist	-84%								
BMUB KS80	-75%								
BDI 80%Pfad	-65%								

Overview policy assumptions

Assumptions: Biomass cost-potential curve

Assumptions: Energy carrier prices EU28 average (incl. taxes and levies, excl. EUAs)

- Scenario 1-Ref:
 - EUA price according to EU Reference Scenario 2016
- Other scenarios
 - Higher EUA price
 - Same CO2-price for non-ETS
- Scenario 4b Mix95
 - Price anticipation 10 years ahead

Steam generation costs included in detailed stock model

Specific CAPEX for steam generation technologies in Germany as a function of installed capacity [Eiuro/kWth]

- techno-economic data considered for steam generation technologies includes CAPEX, OPEX, Efficiency (thermal and electric), lifetime
- CAPEX is a function of technology, installed capacity thermal, country and year

Investment needs are accounted as "additional" compared to a reference

Additional investment needs by innovative process

Sector	Process	Reference process	CAPEX [euro/t product] compared to reference process			red to
			2020	2030	2040	2050
	Plasma steel (H2)*	BOF route	438	377	324	278
Iron and steel	DR electrolysis	BOF route	198	170	146	126
	DR RES H2 + EAF*	BOF route	0	0	0	0
	Methanol H2*	Methanol	-14	-14	-14	-14
	Ammonia H2*	Ammonia	-222	-222	-222	-222
Chemicals	Ethylene methanol- based*	Ethylene naphtha based	0	0	0	0
	Ethylene ethanol- based	Ethylene naphtha based	0	0	0	0
	Less-carbon cement - 30%	Ordinary Portland Cement	20	17	15	13
	Low-carbon cement - 50% (recarbonating)	Ordinary Portland Cement	50	43	37	32
	Low-carbon cement - 70%	Ordinary Portland Cement	80	69	59	51
Non-metallic minerals	Low-carbon cement - 95% (recycled concrete)	Ordinary Portland Cement	150	129	111	95
	Clinker electric kiln	Clinker conventional rotary kiln	50	43	37	32
	Container glass electric furnace	Container glass gas furnace	129	111	95	82
	Flat glass electric furnace	Flat glass gas furnace	129	111	95	82

- Investments are accounted as additional investment needed for the innovative process compared to a reference process
- We assume regular reinvestment cycles and no "early replacement"

Clean gas production costs included as energy carrier price

Investment needs for CCS include entire process chain

Process	Sector	Capture CAPEX [euro/t CO2 a]		Transport ([euro/ t CO	OPEX [% of CAPEX]	
		2030	2050	2030	2050	
Ammonia	Chemicals	40	30	140	113	7%
Methanol		60	44	140	113	7%
Ethylene		180	133	140	113	10%
Integrated steelworks	Iron and steel	90	67	140	113	5%
Clinker	Non- metallic minerals	150	111	140	113	12%
Lime		150	111	140	113	5%
Container glass		400	296	140	113	7%
Flat glass		400	296	140	113	7%
Fibre glass		400	296	140	113	7%
Other glass		400	296	140	113	7%
Integrated paper mill	Pulp and paper	400	296	140	113	7%
Refinery basic		200	148	140	113	10%
Refinery gasoline focused	Refineries	200	148	140	113	10%
Refinery diesel focused		200	148	140	113	10%
Refinery flexible		200	148	140	113	10%

- Capture costs are differentiated by process and differ according to CO2 concentration in flue gas, emission quantity, purity of CO2-stream, etc.
- Assumptions are in line with a broad range given in the literature
- The specific location and regional specificities of individual sites are not considered
- Underlying assumption: Large-scale CO2 transport infrastructure available

