

Progress towards 4DHC in different national and regional contexts

European Regional Development Fund

Renée Heller, Egbert-Jan van Dijck, Frank Suurenbroek

Amsterdam University of Applied Science

SES conference, 10 September 2019, Copenhagen Session 16: Smart Energy Systems analyses, tools and methodologies

Team AUAS team present at SES conference

Renee (E.M.B.) Heller PhD
Senior Lecturer-Researcher Sustainable Energy Systems

Amsterdam University of Applied Sciences
Faculty of Technology
Research Program Urban Technology / Energy and Innovation / SES

Egbert-Jan (E.J.L.) van Dijck MAResearcher-Lecturer Innovation Management and Business Development

Amsterdam University of Applied Sciences
Faculty of Technology
Research Program Urban Technology / Energy and Innovation / SES

Content:

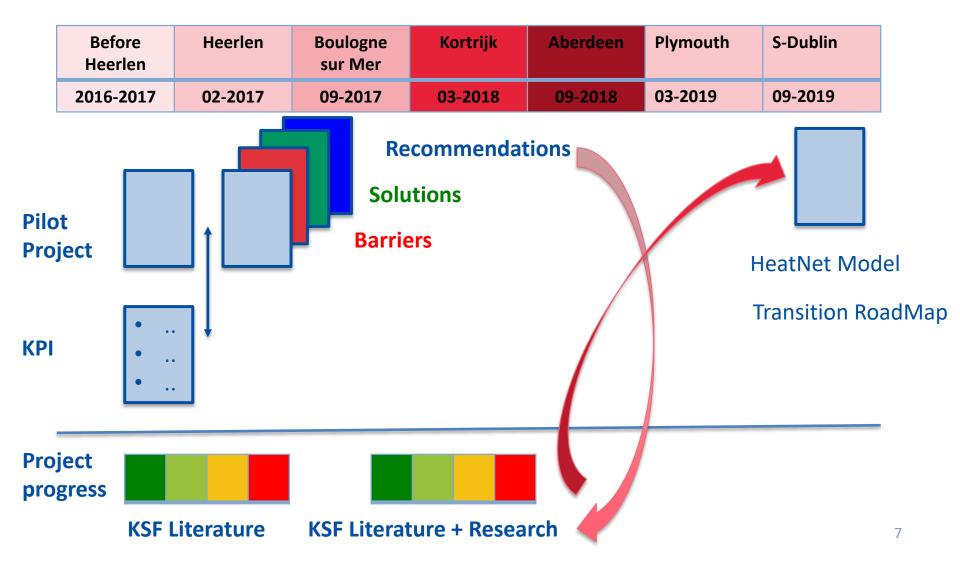
- HeatNet project
- Transnational learning
- Regional and national context
- Key success factors
- Lessons

HeatNet NWE: Transition strategies for delivering low carbon district heat

Pilots: Aberdeen, Boulogne sur Mer, Heerlen, Kortrijk, Plymouth, South Dublin

Objectives:

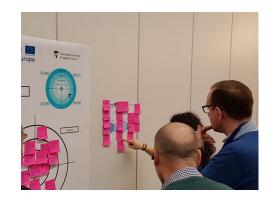
- to introduce and demonstrate 4DHC
- the development of new institutional and organizational frameworks
- 15,000 t CO₂ saved per annum at its end and future rollout in NWE


Method: pilots, research, transnational learning

HeatNet team in Boulogne sur Mer

Action research

Pilots: developed heat networks


	Buildings	Grid	Energy source	Status	DHC maturity
Aberdeen	Existing housing	New HT	Gas -> waste	Building	+
BsM	Existing housing / utility	Extension MT	Biomass + HP	Running	++
Dublin	Existing/New housing / utility	New MT	Datacentre waste heat + HP	Contracting	0
Heerlen	New utility	Extension LT	Mine water + HP	Running	++
Kortrijk	New/existing utility	New HT	Gas CHP	phase one running	0
Plymouth	Existing utility	New LT	ATES + HP	Contracting	0

Transnational learning

- Learning from more mature regions
- Towards 4DHC: Lower supply temperature
- Guidelines:
 - Roadmap
 - Governance
 - Finance
- Technology available, local expertise needs to be built up

Regional and national context – economy & energy policy - Influences on HeatNet

Had to be managed:

- Aberdeen faces the downturn of the oil & gas industry
- Brexit discussion dominates UK
- Belgium: political standstill in election time
- No heat policy experience in Ireland

Positive:

- Scottish obligation to use heat from power plant
- France: mandatory cost benefit analyses of waste heat use for industry
- Dutch climate-agreement on heat

Key Succes Factors (based on Galindo e.a. 2016)

Adequate national policy and regulation

Direct / indirect financial support

Focused local policy and urban planning

Alignment of interests

Availability of relevant local resources

Continuous and comprehensive project development

Price competitiveness against alternative energy solutions

Flexible heat and cold production

Technical and non-technical innovation

Examples of barriers seen in HeatNet

Obligation to connect buildings to gas grid

Investment in grid is high

A lot of different authorities involved in planning of network; Building owners not local

No renewable heat sources available

Roll out dependent on financing

Gas is too cheap

Waste heat not always available / needed

Innovation in one country not allowed in other

Key Succes Factors (Galindo 2016)

Adequate national policy and regulation

Direct / indirect financial support

Focused local policy and urban planning

Alignment of interests

Availability of relevant local resources

Continuous and comprehensive project development

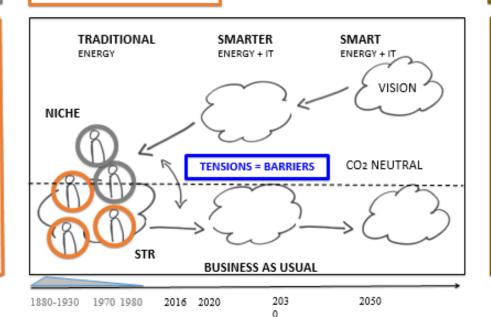
Price competitiveness against alternative energy solutions

Flexible heat and cold production

Technical and non-technical innovation

2017 2019 Examples in HeatNet

f.e. climate agreement NL Additional subsidy Project approval from local government More insight in stakeholders New sources secured Capacity building in local authority Discount of 10% Waste heat of datacenter


3 PERSPECTIVES ON 4DHC PROJECTS

1. PILOT

BARRIERS

- COLLABORATION
- ② FUNDING
- COMPETENTIES
- TARIFF GAPS
- S LEGISLATION
- 6 COMMUNICATION
- স TASK ALLOCATION
- 8 ECONOMIC
- ADOPTION
- EMERGING TECH

2. STAKEHOLDERS

3. SYSTEM INNOVATOR

RECOMMENDATIONS

- SYSTEM THINKING
- 2) TRANSITION=CHANGE
- ③ EDUCATION
- SHARED VALUE
- 3 IMPACT MANAGEMENT
- TBL ACCOUNTING
- POLITICAL INNOVATION
- STAKEHOLDER ANALYSIS
- (II) BEST PRACTICES

3 PERSPECTIVES ON BARRIERS

1. Large engineering project

'Common' barriers e.g. crossing a river or railway.

2. 'CO₂ Reduction' project

'Expected' barriers e.g. ROI to low, mismatch or a lack of consistency.

3. Sustainability Transition project

'Transition' barriers e.g. different values or other standards.

Conclusions on objectives:

- 6 running pilots delivered
- development of new institutional and organizational frameworks
 - + guidelines for governance
 - + set up of local organisation
 - + HeatHet ambassadors
- > 15,000 t CO₂ saved per annum at its end
- transnational learning:
 - + pilot visits & coaching
 - + conferences & workshops

https://www.nweurope.eu/projects/project-search/heatnet-transition-strategies-for-delivering-low-carbon-district-heat/

Conclusions

- Pilots improved on Key Success Factors
- National policy got more supportive
- As long as long term visions are not supported by system change and legislative / financial structures 4DHC will stay a niche
- Barriers are general, solutions need both national and local support

Interreg LEUROPEAN UNION North-West Europe HeatNet NWE

European Regional Development Fund

Thank you!