A framework for Energy Performance Assessment of a large BREEAM certified GEOTABS implemented in

Kortrijk

Julio Vaillant Rebollar Tom Prinzie Caroline Van Marcke Arnold Janssens

re INVEST

nnovation Fund Denmark

5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019

Subjects

- Context
- EDC Study Case Characterization
- Framework for further Investigation
- Closure Remark

1111 Heating with a Heat Pump 1111 **Passive Cooling** HP

Geothermal

Thermally Activated Building System (TABS) Radiant heating and cooling systems with pipes embedded in the building structure (slabs, walls)

Context

VM_EDC

GEOTABS: Overview of some Existing Projects

17 Existing Projects

Source: www.hybridgeotabs.eu; www.geotabs.synavision.de

EDC Study Case Characterization

- European Distribution Center (EDC)
- Building area 90.000 m²
- State of the Art on Warehouse and Logistics: 80% of the orders are automatically processes
- ➢ Green Eelectricity: 13.000 PV Panels
- Very Good BREAM Certification

- Energy
- Transport
- Pollution
- Materials & Resources
- Water Efficiency
- Land Use & Ecology
- Health & Well Being

Building Research Establishment Environmental Assessment Method

EDC Study Case Characterization

Floor 0

Equipment	Specification Parameter	Quantity
Heat Pump	Heating: 170 kW/39 kW, COP= 4,4 (850 kW)	5
Heat Exchanger	Passive Cooling 41 kW	2
	Passive Cooling 380 kW (454 kW)	1
Gas Boiler	107 kW (SH)	6
Air Handler Unit	1260 m³/h 18120 m³/h	9
Glycol/Water Circulating Pump	115 m³/h	3
Hot Water Circulating Pump	22 m³/h; 52 m³/h	6
Cooling Water Circulating Pump	11 m³/h; 25 m³/h	6

Thermal Activated Floor Tsetpoint = 14°C Air Heating System Tsetpoint = 21°C Not Heating Under Floor Heating Tsetpoint = 21°C Ceiling Heating Tsetpoint = 21°C Floor 1

EDC Study Case Characterization

The formalization of a framework for the energy performance assessment

- ✓ Identify and define the share of the heating and cooling loads (base load and peak load)
- ✓ Performance characterization of main HVAC system components (Heat pump, Ground heat exchangers, TABS, Air Handle Units)
- ✓ Assessing the ground energy storage field performance to guarantee the long term thermal balance of the ground.

The formalization of a framework for the energy performance assessment

Operational Optimization as a **Process**

Design of system and infrastructure

Surface	Description	U-value
		[W/m².K]
Distribution center		
Floor on ground	30 cm heavy concrete	Rt = 0.14 m ² .K/W
Facade	8 cm heavy concrete, 10 cm PIR, 6 cm heavy concrete	0.22
Roof	18 cm heavy concrete, 10 cm PIR, 0.1 cm asphalt	0.21
Internal wall	14 cm heavy concrete	Rt = 0.06 m ² .K/W
Internal floor	32 cm hollow core concrete slabs, 14 cm light concrete	Rt = 0.23 m ² .K/W
Door	U _{value} = 2.0 W/m².K	
Office		
Floor on ground	1 cm tiles, 7 cm concrete, 10 cm PUR in situ, 15 cm heavy con- crete	Rt = 4.46 m².K/W
Facade	8 cm heavy concrete, 10 cm PIR, 6 cm heavy concrete	0.24
Roof	18 cm heavy concrete, 16 cm PIR, 0.1 cm asphalt	0.14
Internal wall	1 cm gypsum, 10 cm mineral wool, 1 cm gypsum	Rt = 2.87 m ² .K/W

(Source: Building Design Master Plan)

Problems caused by Ground thermal imbalance

- Decrease of the outlet temperature of ground heat exchanger (GHE)
- Deterioration in the heating performance of the ground-coupled heat pumps
- Heating reliability will decline indoor air temperature falling below design range

Problems caused by Ground thermal imbalance

- Decrease of the outlet temperature of ground heat exchanger (GHE)
- Deterioration in the heating performance of the ground-coupled heat pumps
- Heating reliability will decline indoor air temperature falling below design range

Geothermal Response Test Results

Parameter	Value
Ground heat conductivity coefficient	1.82 W/m K
Heat capacity of the Ground	2.5 MJ/m³/K
Undisturbed Ground temperature	12 °C
Geothermal heat flow	0.07 W/m²

GHE solutions for Ground thermal imbalance

- Borehole space
- Borehole length
- Borehole layout
- Improving thermal properties

HVAC System-modified solutions for thermal imbalance of GCHPs

- > The solar collector can release heat to the soil for recharging GHE
- Identify the best combination of TABS and secondary emission system
- > Utilization of the of auxiliary condenser boiler (214 kW) to take on the peak heating load
- > Increases the cooling demand by connecting TABS that were not foreseen to receive passive cooling
- > Utilization of the industrial process waste heat as compensation by mean of heat injection into the soil.

Operation-modified solutions for thermal imbalance of GCHPs (REHVA Guidebook no. 20)

Intermittent operation strategy

- Seasonal operation strategy
- Rule Based Control strategies
- Model Predictive Control strategies

> Control strategies for TABS :

- Time based or zone temperature control
- Weather dependent supply/average water temperature control
- Intermittent pump operation control
- TABS surface temperature is the controlled variable,

Closure Remark

- 1. A framework for the energy performance assessment GEOTABS building defining the key element to approach the *Operational Optimization of the System as a Process* have been proposed
- 2. Potential *Problems caused by the Ground thermal imbalance* due to the significant difference of Cooling and heating demand have been highlighted
- 3. Ground Heat Exchanger solutions to overcome the thermal imbalance like increasing borehole space/length/depth and the design of the borehole layout have to be closed follow up by mean of *Measurement of ground temperature behaviour*.
- 4. Possible **Solutions and priorities** to carry out future in-depth studies have been presented

Closure Remark

Suggestions of further Investigation priorities

- Integrating the gas boiler to take on about 25% heating load can achieve better economy as well as lower energy consumption.
- Integration of solar energy to recharge the ground during summer or night time can avoid the thermal imbalance and improve the heating COP of the heat pumps
- Integration with waste heat from the industrial process can improve the thermal imbalance, but is restricted by the amount and generating occasion of waste heat.
- Seasonal operating strategy can make full use of the advantages of the auxiliary energy at different periods in hybrid GCHP systems to eliminate the thermal imbalance.
- Intermittent operation can also be an interesting option to evaluate, a suitable intermittent strategy is 12 h operation and 8–12 h downtime.

A framework for Energy Performance Assessment of a large BREEAM certified GEOTABS implemented in Kortrijk

Julio Vaillant Rebollar Tom Prinzie Caroline Van Marcke Arnold Janssens

UNIVFRSI

ERSITY

re INVEST

Fonden Energi- & Miljødata www.emdfonden.dk

5th International Conference on Smart Energy Systems Copenhagen, 10-11 September 2019

sEEnergies