

Renewing district heating

Improving the performance of District Heating Systems in Central and Eastern Europe

Goran Krajačić

5th International Conference on Smart Energy Systems

Copenhagen, 10th of September 2019

This project is funded by the EU's Horizon 2020 research and innovation programme under grant agreement N°784966, and lasts from April 2018 to September 2020.

This project receives co-funding from the German Federal Ministry of Economic Cooperation and Development.

немачка

сарадња

What can we do for them?

To overcome barriers to district heating deployment in CEE, KeepWarm works in a multi-stage approach to conduct the following activities:

Increase the capacity of specialists working in DHS companies by offering training workshops

Support them with the development of viable business plans

Advise them on how to mobilise funding for bankable pilot projects

Exhibit replicable DHS demo cases

Facilitate the multi-level integration of

DHS retrofits into key strategies and plans

RES in DH in Croatia

- Biomass cogeneration
 - 3 MWe, 10 MW_{th} (Osijek, Sisak)
 - 1 MWe, 4,5 MW_{th} (Glina)
 - ...
- Biomass boiler
 - 1 MW_{th} (Pokupsko)
- Solar thermal
 - 400 m²; 260,8 kW_{th} (Vukovar)
- Geothermal?
 - Krapinske toplice, Topusko, Varaždinske toplice
- Heat pumps?

District heating system in Velika Gorica

SYSTEM PARAMETER	VALUE	
CONTRACTED POWER	46,56 MW (installed 59 MW)	ŠIBENSKA PI(MW)=1,
HEATED AREA	338.379,91 m^2	1)1
NUMBER OF HEATING SUBSTATIONS	120	N
PIPELINE LENGHT	10.671m	
PERCENTAGE OF PREINSULATED PIPES	70%	DOMJANK Pi(MW)=2 Pz(MW)=2

Inputs

Energy conversion and distribution 6.184 8% 15.650 21% 53.431 71%

Delivered heat
 Production losses
 Distribution losses

Heat production and consumption - Vidrićeva

[MWh]

[MWh]

Gas consumption

Seasonal storage - Velika Gorica

Felipe Andreu Javier, Schneider Daniel Rolph, Krajačić Goran: *Evaluation of integration of solar energy into the district heating system of the city of Velika Gorica*, Thermal Science 2016 Volume 20, Issue 4, Pages: 1049-1060 https://doi.org/10.2298/TSCI151106106A

Critical volume criteria

- do not reject any heat produced
- reach the maximum usage of the accumulation

DHC – integration V. Gorica

Multi-objective optimization of district heating and cooling systems for a one-year time horizon

Street

Hrvoje Dorotić^{*}, Tomislav Pukšec, Neven Duić

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Department of Energy, Power Engineering and Environment, Ivana Lučića 5, 10002 Zagreb, Croatia

DH expansion?

District	Heat Demand [MWh]
Buzin	22 500
Veliko Polje – Velika Mlaka	32 900
Velika Gorica	158 350
International airport Zagreb	47 900

Project	Scenarij 1	Scenarij 2 - vrelovod	Scenarij 2 - OEI		
Investment I ₀	11.685.090,00 €	18.539.400,00 €	75.700.000,00 €		
0&M	1.168.509,00 €	1.853.940,00 €	2.385.000,00€		
Fuel cost	-	-	825.000,00 €		
Production	158.350 MWh	171.650 MWh	90.000 MWh		
LCOE		19,47 €/MWh	103,5 €/MWh		
LCOE total	13,30 €/MWh	48,37 €/MWh			

Interconnecting DH grids of Zagreb and Velika Gorica

In Cooperation with CITIES project and DTU Compute

Generation demand: 61,0 GWh

- Connection piping price assumptions from: *Frederiksen, Werner: District Heating and Cooling* adjusted for inflation and currency exchange
 - Piping cost:

	Start – up cost (M€)	Additional cost per capacity (M€/MW)
Velika Gorica	3,87	0,35

- Perfect foresight
- DH distribution losses modelled exogenously
- Transmission pipe loss: 5%
- Technology costs from: *Technology datasheet for energy plants* by Energinet and DEA
- CO2 price: 22€ / ton
- Electricity distribution and transmission fees: 40 €/MWh_{ele} (in total)

In Cooperation with CITIES project and DTU Compute

Case study – investment options

- 1) Thermal energy storage
- 2) Electric boiler and/or heat pump
- 3) Connection pipe:
 - Zagreb south to Velika Gorica

In Cooperation with CITIES project and DTU Compute

	Investment cost (EUR/ MW _{heat})	Annualized investment cost (EUR/(MW year))	Fixed cost (EUR/(MW year))	Variable cost (EUR/MWh)	Total efficiency	Lifetime (years)	Discount rate
Electric boiler	75,000	7,079	1,100	0.8	98%	20	7%
Heat pump	700,000	60,067	2,000	2	400% (COP)*	25	7%
Thermal storage (per MWh)	3,000	225	8.6	0.1	98%	40	7%

Results techno-economic assessment

 Optimal investment portfolio: 972 MWh thermal storage and 20.75 MW pipe capacity (peak final energy demand: 23.48 MW)

	Storage	Connection pipe		
Investment cost (€)	2,916,000	11,127,275		
Annuity (€ / year)	218,727	834,647		
Total O&M (€ / year)	8,359	66,017		
Total yearly costs (€/year)	1,127,750			

	€/MWh of heat sold
Capital price to recover investment	20.5
Calculated 'room' for DH heat price*	18.7

• * compared to the best available alternative (gas and individual heat pump)

In Cooperation with CITIES project and DTU Compute

DTU

Results

In Cooperation with CITIES project and DTU Compute

Overall savings after the interconnection! But highly sensitive to electricity and gas prices

		Zagreb south and north (base case)	Zagreb and Gorica	Velika	for 2017	day ahead weighted average p 7: 53.81 €/MWh (source: Crope d DK2 on Nordpool day aboad:	ex)
Total system costs (M€) Difference (€)		4,37	3,29 -1.09		 DK1 and DK2 on Nordpool day ahead: 30.08 and 31.97 €/MWh (source: Nordpool) Gas price in 2017: 26 €/MWh for non-household consumers in Croatia (source: Eurostat) 		
		0					
Connected DH systems:	All heat supplied via interconnection System costs (M€/year)		_	ll portfolio E/year)	Difference		
<u>Velika Gorica</u> and Zagreb	3,93		3	3,29	-16.3 %		

!! Socio-economic costs sensitive to electricity prices > income from electricity sales – around 117 M€

Solar DH in V. Gorica asumptions

- Storage loss: 10%
- Equipment costs (pipelines, pumps, valves, etc.) =10% of the investment cost
- Other costs (design, regulation system, etc.) = 12% of the investment costs
- Discount rate: 5%
- Lifetime: collector field 25 years storage – 50 years

- Isentropic model for the calculation of collector output
- EnergyPLAN model
- Storage capacity based on 100% solar heat utilization
- Heat price modified calculation based on Guadalfajara et all:A simple method to calculate Central Solar Heating Plants with Seasonal Storage, 2013

- around 15% of heat demand can be covered via solar collectors using only small buffer storage (SF 15% = 190 MWh storage)
- heat prices range between 53€ and 69€ per MWh

Compete with n. gas heating

Gas prices (including taxes) for household consumers, second half 2018

eurostat 🖸

Support DH through policy?

N. Gas price composition

Wholesale day-ahead gas prices on gus hubs in the EU

Source: VaasaETT

under grant agreement N°784966, and lasts from April 2018 – September 2020.

This project receives co-funding from the German Federal Ministry of Economic Cooperation and Development.

