Data Analysis Techniques for Monitoring District Heating Substations

Shahrooz Abghari shahrooz.abghari@bth.se

Co-authors: Veselka Boeva, Christian Johansson, Jens Brage Håkan Grahn , and Niklas Lavesson

September 10, 2019

District heating domain

• Faults in substations [1]:

- Comfort problem and physical faults
- Known faults but unsolved
- Faults which require new fault detection methods

[1]. Gadd, H., Werner, S.: Fault detection in district heating substations. Applied Energy 157 (2015) 51–59

Hybrid method

Higher Order Mining [2]: mining from *derived data rather than raw data* Combination of methods:

- Sequential Pattern Mining > to find *frequently occurring patterns* with respect to a user-specified threshold.
- Clustering Analysis,
 - Weekly clustering > to group extracted patterns based on their similarities
 - Consensus clustering, -> to group patterns that are coming from two weeks explaining the same phenomenon.
- Minimum Spanning Tree -> to detect *outlying* patterns

[2] F. Roddick, M. Spiliopoulou, D. Lister, and A. Ceglar, "Higher order mining," ACM SIGKDD Explorations Newsletter, vol. 10, no. 1, pp. 5–17, 2008.

Data & preprocessing

o Hourly numerical measurements, 2-year data

◦ Feature selection

- Outdoor temperature and *five* features:
 - 'sec_delta_t', 'prim_delta_t', 'consumed_energy', volume_flow', 'station_effectivness'
 - station_effectivness =

prim_delta_t

primary supply temperature – secondaryreturn temperature

Data categorization

- Transform the continues data into *four* categories
- *Four* seasons = *low, low_medium, medium_high, high*

Proposed method

Cluster analysis

Similarities between two weeks

TEKNISKA HO S N H B TH N

C'

C′₁

 C'_2

C'₃

C′₄

С

 C_1

 C_2

 C_2

 \circ Given two clustering solutions of datasets *X* and *X*':

•
$$C = \{C_1, C_2, ..., C_n\}$$

• $C' = \{C'_1, C'_2, ..., C'_m\}$

$$\circ S_{W}(C,C') = \frac{\sum_{i=1}^{n} (min_{j=1}^{m} w_{i}.d(c_{i},c'_{j}))}{2} + \frac{\sum_{j=1}^{m} (min_{j=1}^{n} w'_{j}.d(c_{i},c'_{j}))}{2}$$

• $w_{i} = \frac{|c_{i}|}{X}$
• d , distance measure

Proposed method

Minimum spanning tree (MST)

 \circ Given an undirected, connected, and weighted graph G=(V,E)

- a spanning tree of the graph G is a tree that covers all the nodes of G
- a tree with the minimum cost of traversing is called minimum spanning tree
- $_{\odot}$ MST is applied on top the clustering solutions
 - *V* = exemplars of the clusters
 - *E* = dissimilarity between *V*
- $_{\odot}$ Removing the longest edges
 - Smaller sub-trees are labeled as outlier

Proposed method (cont.)

KEKNISK.

Substation's bi-weekly profile, 2017

Results:

Results: Comparison of two profiles, 2017

Results: Weekly clustering models and consensus model

175 cluster = 5 duster = 11 meter volume flow eature 3000 - 2000 cluster = 10 25 125 150 175 duster = 4 feature outdoor 6-<u>1</u> cluster = 3 feature 150 175 125 50 duster = 2 皇 sec_return_te 45 feature 125 150 175 cluster = 7 cluster = 1 feature 55 sec supply ten 50 1 2 3 4 5 feature cluster = 6 cluster = () duster = 12 45 0.92 Ś A A station_efficiency_temp añie. W 0.88

Future work

- $_{\odot}$ We aim to pursue further analysis and evaluation of the proposed approach
- \circ In the long-term perspective,
 - Label weekly patterns with some *performance indicators*

Thank You for listening!

Shahrooz Abghari shahrooz.Abghari@bth.se