Validation of fault detection methods for district heating customer installations

SARA MÅNSSON
PER-OLOF JOHANSSON KALLIONIEMI, KERSTIN SERNHED, TIJS VAN OEVEREN, DIRK VANHOUTD, ROBBE SALENBEN, MARCUS THERN
Why fault detection of DH installations?

• Two common reasons to increased DH return temperatures:
 - Faults in the customers’ internal heating systems
 - Faults in the district heating customer substations

• Many customer installations are poorly performing in some way
 → decreased energy efficiency for the entire DH system

• Customer installations must be well performing in 4GDH systems

• Many DH utilities have no systematic way of finding poorly performing installations

• Important to develop automatic fault detection tools
 - Make use of customer data!
Purpose of the study

Overall objective:

• Evaluate the performance of two previously developed fault detection methods that utilize customer data:
 - Heat load
 - Mass flow
 - Supply and return temperature
 - Outdoor temperature

Objectives:

• Create a fault “key” – data known to contain specific faults
• Investigate what installations are identified by fault detection methods
• Investigate what faults are identified by fault detection methods
Previous studies:
Fault detection method 1 using customer data

- Can we detect faults using customer data?
- Reference case of well performing installations
- Model the average behavior of reference case and create thresholds
- Compare performance to reference case thresholds – limit checking
Previous studies:
Fault detection method 2 using customer data

Model behaviour of installation
- Customer data from well performing installations
- Output: mass flow per hour
- Evaluate model performance

Investigate model performance for faulty data
- Introduce model to data known to contain faults
- Drifting temperature sensors and faulty temperature sensors
- Evaluate model performance

Compare model predictions to real data
- Investigate residuals between real data and predicted data
- Does the model behave differently for faulty data?
- Does the model behave differently for all faults?
Previous studies:
Fault detection method 2 using customer data

• Model performance changed for faulty data
 - But not significantly for all faults!
Problem formulation

Overall objective: Evaluate the performance of the two previously developed fault detection methods that utilize customer data

1. Investigate what faults are represented in data set
 - What faults are *possible* to identify in customer data?

2. What installations are identified using the fault detection methods?

3. What faults are identified using the fault detection methods?
Method: Data and known faults

Objective: Create a fault “key”

• Data set: 2 048 unique installation IDs
 - Data from Jan 2017 – Mar 2019, hourly data
 - Heat load, mass flow, return and supply temperature, outdoor temperature

• Identified faults known to occur in data set: 200 installation IDs
 - Investigated service records, customer data bases, etc.
 - May be that the data contained more unknown faults
Results:
Known faults in the DH system

Distribution of identified faults in the DH system during Jan 2017 - Mar 2019

- Incorrect settings: 58
- Leakages: 32
- Circulation pump: 28
- Valve: 28
- Dirty filter: 10
- Expansion vessel: 9
- Safety valve: 9
- Actuator: 8
- Valve sensors: 6
- Manometer: 2
- Thermostat: 2
- HW system temperature sensor: 1
- Supply temperature sensor: 1
- Terminal: 1
- Outdoor temperature sensor: 1
- Automatic bleeding valve: 1
- Radiator system temperature sensor: 1
- Non-return valve: 1
- Meter failure: 1
Results:
Known faults in the DH system

... That would be possible to detect using customer data

- Incorrect settings: 58
- Leakages: 32
- Circulation pump: 28
- Valve: 28
- Dirty filter: 10
- Expansion vessel: 9
- Safety valve: 9
- Actuator: 8
- Valve sensors: 6
- Manometer: 2
- Thermostat: 2
- HW system temperature sensor: 1
- Supply temperature sensor: 1
- Terminal: 1
- Outdoor temperature sensor: 1
- Automatic bleeding valve: 1
- Radiator system temperature sensor: 1
- Non-return valve: 1
- Meter failure: 1

0 10 20 30 40 50 60
Method:
Evaluation of fault detection methods

Objective: Investigate detected installations and faults

- Reference case data: January 2017- March 2019
- One year of data was analyzed using a sliding window
- Result were collected and compared
 - Identified installation *known* to have contained faults during the period
 - Investigated the installations *not known* to have contained faults
 - Further investigation of service records, customer data bases, etc.
Results:
Evaluation of fault detection methods

• 135 installations were identified in the analysis
• 11 of the installations *known* to contain faults were identified
• 124 installations *not known* to contain faults:
 - Heat exchanger
 - Low delta T
 - Missing values
Conclusions and future work

• Fault detection methods capable of detecting poorly performing installations
• Not all faulty installations were detected – methods need further evaluation

• Further analysis:
 - Shorter analysis period
 - Identify *when* a fault has appeared/has been corrected

• Investigate more installations
 - Discussions with service technicians
 - Visits to customer installations to evaluate performance