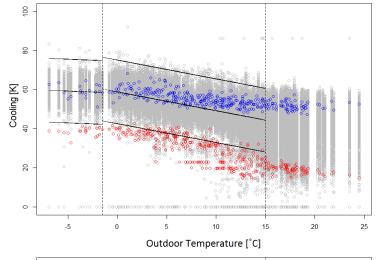


Why fault detection of DH installations?

- Two common reasons to increased DH return temperatures:
 - Faults in the customers' internal heating systems
 - Faults in the district heating customer substations
- Many customer installations are poorly performing in some way
 - → decreased energy efficiency for the entire DH system
- Customer installations must be well performing in 4GDH systems
- Many DH utilities have no systematic way of finding poorly performing installations
- Important to develop automatic fault detection tools
 - Make use of customer data!

Purpose of the study


Overall objective:

- Evaluate the performance of two previously developed fault detection methods that utilize customer data:
 - Heat load
 - Mass flow
 - Supply and return temperature
 - Outdoor temperature

Objectives:

- Create a fault "key" data known to contain specific faults
- Investigate what installations are identified by fault detection methods
- Investigate what faults are identified by fault detection methods

Previous studies: Fault detection method 1 using customer data

Setup Lemberature [C]

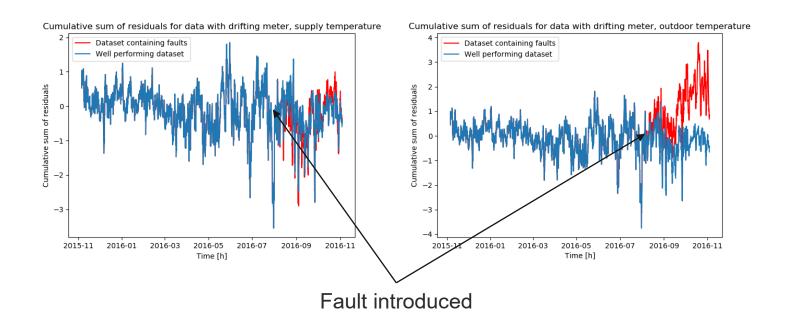
- Can we detect faults using customer data?
- Reference case of well performing installations
- Model the average behavior of reference case and create thresholds
- Compare performance to reference case thresholds – limit checking

Previous studies: Fault detection method 2 using customer data

Model behaviour of installation

Investigate model performance for faulty data

Compare model predictions to real data


- Customer data from well performing installations
- Output: mass flow per hour
- Evaluate model performance

- Introduce model to data known to contain faults
- Drifting temperature sensors and faulty temperature sensors
- Evaluate model performance

- Investigate residuals between real data and predicted data
- Does the model behave differently for faulty data?
- Does the model behave differently for all faults?

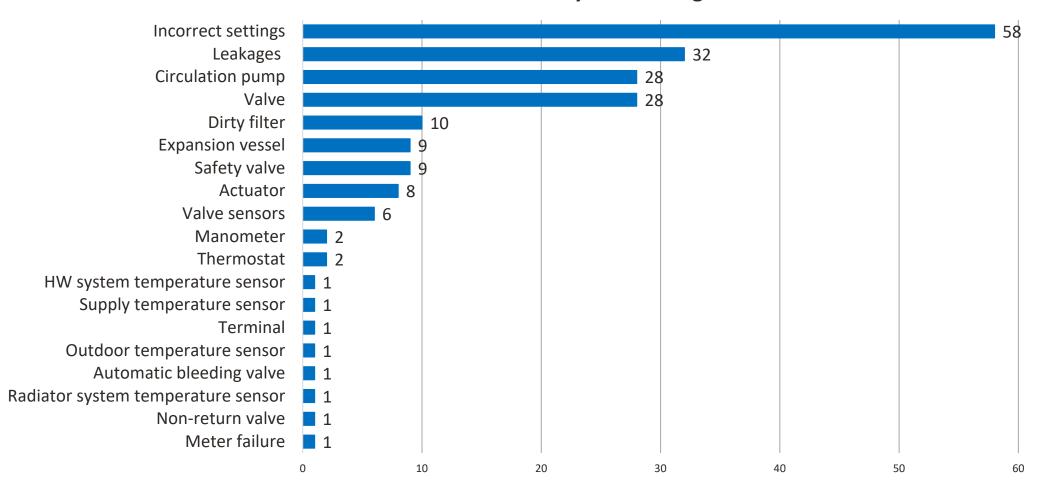
Previous studies: Fault detection method 2 using customer data

- Model performance changed for faulty data
 - But not significantly for all faults!

Problem formulation

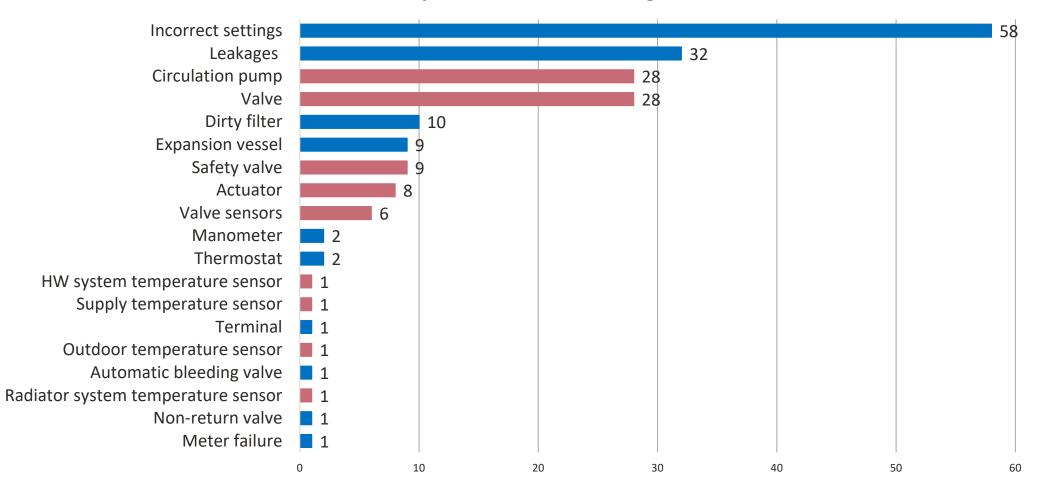
Overall objective: Evaluate the performance of the two previously developed fault detection methods that utilize customer data

- 1. Investigate what faults are represented in data set
 - What faults are *possible* to identify in customer data?
- 2. What installations are identified using the fault detection methods?
- 3. What faults are identified using the fault detection methods?


Method: Data and known faults

Objective: Create a fault "key"

- Data set: 2 048 unique installation IDs
 - Data from Jan 2017 Mar 2019, hourly data
 - Heat load, mass flow, return and supply temperature, outdoor temperature
- Identified faults known to occur in data set: 200 installation IDs
 - Investigated service records, customer data bases, etc.
 - May be that the data contained more unknown faults


Results: Known faults in the DH system

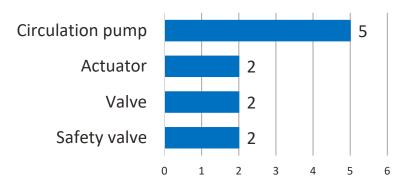
Distribution of identified faults in the DH system during Jan 2017 - Mar 2019

Results: Known faults in the DH system

... That would be possible to detect using customer data

Method: Evaluation of fault detection methods

Objective: Investigate detected installations and faults


- Reference case data: January 2017- March 2019
- One year of data was analyzed using a sliding window
- Result were collected and compared
 - Identified installation known to have contained faults during the period
 - Investigated the installations *not known* to have contained faults
 - Further investigation of service records, customer data bases, etc.

Results:

Evaluation of fault detection methods

- 135 installations were identified in the analysis
- 11 of the installations known to contain faults were identified
- 124 installations not known to contain faults:
 - Heat exchanger
 - Low delta T
 - Missing values

Identified, known faults

Conclusions and future work

- Fault detection methods capable of detecting poorly performing installations
- Not all faulty installations were detected methods need further evaluation
- Further analysis:
 - Shorter analysis period
 - Identify when a fault has appeared/has been corrected
- Investigate more installations
 - Discussions with service technicians
 - Visits to customer installations to evaluate performance

