INVESTIGATION OF THE ENERGY FLEXIBILITY POTENTIAL OF DANISH RESIDENTIAL BUILDING ARCHETYPES

RASMUS ELBÆK HEDEG AARD

PROJECT: LOCAL HEATING CONCEPTS FUNDED BY EUDP (PROJECT NUMBER 64017-0019)

REQUIRED CAPACITY IN DINETWORKS

Consumption composed of:

- Space heating
- Domestic hot water usage
- Heat losses in the distributionnetwork

*Data generously provided by district heating supplier AffaldVarme Aarhus

REQUIRED CAPACITY IN DINETWORKS

Consumption composed of:

- Space heating
- Domestic hot water usage
- Heat losses in the distributionnetwork
- + Redundancy requirements (often n-1 criteria)
- = Oversized components for majority of year

*Data generously provided by district heating supplier AffaldVarme Aarhus

REQUIRED CAPACITY IN DINETWORKS

Consumption composed of:

- Space heating
- Domestic hot water usage
- Heat losses in the distributionnetwork
- + Redundancy requirements (often n-1 criteria)
- = Oversized components for majority of year

Removing the **50 hours** with highest consumption for each year yields significant capacity reductions.

Production: 14.3% - 17.7%

Demand: 13.5% - 16.5%

*Data generously provided by district heating supplier AffaldVarme Aarhus

ENERGY FLEXIBLE BUILDINGS

Objective:

Shift consumption to lower peak demand.

ENERGY FLEXIBLE BUILDINGS

Objective:

Shift consumption to lower peak demand.

Principle:

Utilize the inherent thermal capacity of buildings to shift consumption without impacting comfort.

CASE STUDY: CITY EXPANSION SCENARIO

CASE STUDY: CITY EXPANSION SCENARIO

Questions:

- 1. To what extent can energy flexibility lower the required capacity of the neighborhood?
- 2. Should efforts be focused on making a given type of building flexible?

CASE STUDY: CITY EXPANSION SCENARIO

Questions:

- 1. To what extent can energy flexibility lower the required capacity of the neighborhood?
- 2. Should efforts be focused on making a given type of building flexible?

Method:

- 1: Establish dynamic models of buildings
- 2: Perform multiple simulations of the area with different groups of buildings being flexible.

ARCHETYPE MODELLING

Archetype modelled:

- Archetype 1:1951-1960

- Archetype 2:1979-1998

- Archetype 3:2011-2015

ARCHETYPE MODELLING

Archetype modelled:

- Archetype 1:1951-1960
- Archetype 2:1979-1998
- Archetype 3:2011-2015

Calibration of dynamic archetype models

- 1. Smart-meter consumption measurements
 Sample: Six months worth of data from 100 buildings
- 2. Weather data (Temperature and solar radiation)
- 3. Prior knowledge (our best beliefs)

IN PROPERTY IN PROPERTY.

ARCHETYPE MODELLING

Archetype modelled:

- Archetype 1:1951-1960

- Archetype 2:1979-1998

- Archetype 3:2011-2015

Calibration of dynamic archetype models

- 1. Smart-meter consumption measurements
 Sample: Six months worth of data from 100 buildings
- 2. Weather data (Temperature and solar radiation)
- 3. Prior knowledge (our best beliefs)

RESULT SPREAKDOWN

RESULT\$BREAKDOWN

RESULT\$BREAKDOWN

MAIN FINDINGS

Results indicated:

- 1. Significant capacity reductions may be achieved with only a modest increase in overall consumption.
- 2. Performance affected by:
 - Comfort preferences of occupants
 - Building energy efficiency

MAIN FINDINGS

Results indicated:

- 1. Significant capacity reductions may be achieved with only a modest increase in overall consumption.
- 2. Performance affected by:
 - Comfort preferences of occupants
 - Building energy efficiency

Energy retrofitting may benefit both energy conservation and energy flexibility.

