

Demand Response Potential in Brazil: Theoretical Assessment

Smart Energy Systems Conference - 2019

Smart Energy Systems

Géremi Dranka Paula Ferreira

Clentifico e Tecno

Jentífico e Tecnológico

OUTLINE

Smart Energy Systems

INTRODUCTION

METHODOLOGY

RESULTS AND DISCUSSION

CONCLUSION & OUTLOOK

through DCM

Smart Energy Systems

grid **FLEXIBILITY**,

e.g.,

Main pillars towards a sustainable energy future

Challenge: High growth of Variable Renewable Electricity (V

Possible solution: Enhance the

Smart Energy Systems

Consumers will play a key role in the electricity market in the future

DEMAND-SIDE MANAGEMENT **1. Demand-response(DR)**

2. Enerav Efficiency (EE)

 Evolution of smart grids > Growing market share of smart appliances

Smart Grids may strongly facilitate the insertion of demand-side resources such as air conditioning and washing machines without compromising user comfort

 Brazil: The number of households in Brazil is expected to increase about 40 million in 2050 comparatively to 2012

Smart Energy Systems

- Most of the previous studies
- Focus on qualitative assessments
- Few works addressing
 - (1) the assessment of the theoretical DR potential in the Brazilian power sector and
 - (2) the existing analysis focuses on specific sectors and/or regions within the country

We quantitatively assess the theoretical DR potential for the specific case of Brazil

Smart Energy Systems

Different categories of DR potentials

METHODOLOGY

Smart Energy Systems

Load shedding: Industry

Load shifting: Residential and Commercia

Table 2: DR applications selected to be considered in this study.

Energy-Intensive Industries	DR Action	Commercial	DR Action	
Bauxite	Shedding	Air-conditioning/ cooling	Shifting	
Alumina	Shedding	Direct Heating	Shifting	
Primary Aluminum	Shedding	Storage water heater	Shifting	
Iron and Steel	Shedding	Residential	DR Action	
Ferroalloys	Shedding	Freezer	Shifting	
Soda	Shifting	Refrigerator	Shifting	
Petrochemical	Shifting	Washing machine	Shifting	
Cellulose	Shifting	Laundry dryers	Shifting	
Paper Machines	Shifting	Dishwashers	Shifting	
Cement mills	Shifting	Air Conditioning	Shifting	

METHODOLOGY

Smart Energy Systems

Regio n	2017	2020	2030	2040	2050	Reference
NE	18.3	19.3	22.1	24.4	26.7	[3,31]
NO	6.1	6.4	7.3	8.1	8.9	[3,31]
SE/CO	33.6	35.3	40.5	44.7	48.9	[3,31]
NO	9.6	10.1	11.6	12.8	14.0	[3,31]
Total	67.7	71.1	81.5	90.0	98.5	-

 Table 3: Projected Number of Households (Million).

Table 4: Equipment Rate (%).

Equipment	2017	2020	2030	2040	2050	Reference
Freezer	18.0%	15.4%	14.6%	13.3%	12.0%	[3]
Refrigerator	110.0%	110.6%	112.0%	112.0%	112.0%	[31]
Washing Machine	69.0%	74.4%	81.0%	87.5%	94.0%	[3]
Laundry Dryers	6.9%	7.2%	8.2%	9.4%	10.8%	-
Dishwashers	2.0%	2.1%	2.4%	2.7%	3.1%	-
Air Conditioning	42.0%	46.2%	60.7%	62.8%	65.0%	[3]

Table 5: Specific Energy Consumption (kWh/Equipment).

Equipment	2017	2020	2030	2040	2050	Reference
Freezer	479	466	425	388	354	[31]
Refrigerator	329	323	303	285	268	[31]
Washing Machine	64	63	59	55	51	[31]
Laundry Dryers	308	314	336	360	385	[30]
Dishwashers	272	277	297	318	340	[30]
Air Conditioning	636	627	598	571	545	[31]

Table 6: Other input data.

Industrial Sector	Value
Revision outages (%)	5%
Capacity utilization level (%)	90%
Number of hours in a year	8760
Flexible share (%)	100%
Commercial Sector	Value
Annual Growth (%) - 2017-2020	5.1%
Annual Growth (%) - 2020-2030	5.2%
Annual Growth (%) - 2030-2040	4.4%
Annual Growth (%) - 2040-2050	4.5%
Number of full load hours	5840

RESULTS

Smart Energy Systems

Industrial sector (load shedding + load shifting) - TWh

Load shedding potential increases by 102% (2017-2050)

- ✓ Load shifting potential increases by 115% (2017-2050)
- Wide disparity between the DR potentials for each region
 - Higher contribution: Southwest region

Industrial sector (load shedding + load shifting) - GW

■ 2017 ■ 2020 ■ 2030 ■ 2040 ■ 2050

Fig. 5. Maximum DR potential for each energy-intensive industrial process (GW).

✓ Increase from 7.9 GW to 16.4 GW (2017-2050)

Commercial sector (load shifting)

Fig. 6. Overall DR potential (load shifting) for commercial processes (TWh).

RESULTS Commercial sector

Fig. 7. Overall DR potential for each commercial process (left axis) and the average daily load curve (right axis).

NE NO SE SO — Daily Profile - Average

- Maximum hourly DR capacity
- ✓ Variation between 0.1 GW to 1.6 GW across a typical day
- Due to the limited commercial activity at night, the DR potential at this period is very limited
- DR availability for the commercial sector best matches the daily load curve

RESULTS

Smart Energy Systems

Residential sector (load shifting)

Fig. 9. Overall hourly DR potential for each appliance in the residential sector (left axis) and the average daily load curve of the interconnected power system (right axis) (in GW for 2017).

RESULTS

Smart Energy Systems

Residential sector (load shifting)

Fig. 8. Overall hourly DR Potential for each region in the residential sector - 2017 (GW).

✓ Higher DR potential for Southwest ✓ Highest DR potential in a day: 5.5 GW (22 p.m.)

CONCLUSION

- The theoretical DR potential is assessed for the Brazilian power system
- The results include a sectoral and regional analysis
- The majority demand-side response potential may lie in the industrial sector
- Lower but a still substantial potential for the residential sector was also identified
- The maximum theoretical DR potential is expected to double between 2017 and 2050 (12.8 GW to 25.6 GW)
- In further research, other DR potentials should be addressed (e.g.,

Thank you for your attention! Seven geremidranka@utfpr.edu.br paulaf@dps.uminho.pt

