Contributing global CO$_2$ mitigation by utilisation of food industry heat into smart Croatian DHS via Total Site heat recovery
S. Boldyryev, G. Krajačić*, N. Duic, T. Novosel

Department of Energy, Power Engineering and Environment, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Goran.Krajacic@fsb.hr, tel: +385 1 6168433, Ivana Lucica 5, HR-10002 Zagreb, Croatia.
Outline

• Introduction
• Objectives
• Methodology
• Case study
• Results
• Summary and future works
Introduction

• To produce 1 J of food energy 10 J of primary energy is required
• The population growth required the annual energy consumption rise on 24 – 40%
• On the other hand it leads to fast deterioration of environment, to CO\textsubscript{2}, NO\textsubscript{x}, SO\textsubscript{x}, dust, soot and other industrial emissions
Croatian Energy Balance for 2012

Total final consumption 6381 thousand tonnes of oil equivalent (ktoe)

Simple site

Heat flow interconnections:
- waste heat
- process heating
- district heating
- hot water supply
Main challenges

• Is it possible to reduce the energy consumption?
• How much we can save?
• What will be the real energy targets?
• How to estimate an investment level?
• What will be the payback time?
Methodology

Process level

• Data extraction
• Set a cost effective targets for industrial processes
• Waste heat identification

Total Site level

• Total Site Profiles
• Site heat recovery targeting
• Calculation of heat transfer area and units numbers
• Economic indicators
Process level

- Data tables
- Cost data
- Composite curves
- Grand Composites
Data collection

<table>
<thead>
<tr>
<th>Process A – industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream</td>
</tr>
<tr>
<td>Stream 1 cooling</td>
</tr>
<tr>
<td>Stream 2 condensation</td>
</tr>
<tr>
<td>Stream 3 condensation</td>
</tr>
<tr>
<td>Stream 4 cooling</td>
</tr>
<tr>
<td>Stream 5 cooling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process B – industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream</td>
</tr>
<tr>
<td>Stream 1 cooling</td>
</tr>
<tr>
<td>Stream 2 condensation</td>
</tr>
<tr>
<td>Stream 3 condensation</td>
</tr>
<tr>
<td>Stream 4 condensation</td>
</tr>
<tr>
<td>Stream 5 condensation</td>
</tr>
<tr>
<td>Stream 6 evaporation</td>
</tr>
<tr>
<td>Stream 7 evaporation</td>
</tr>
<tr>
<td>Stream 8 heating</td>
</tr>
<tr>
<td>Stream 9 heating</td>
</tr>
<tr>
<td>Stream 10 heating</td>
</tr>
<tr>
<td>Stream 11 heating</td>
</tr>
<tr>
<td>Stream 12 heating</td>
</tr>
<tr>
<td>Stream 13 heating</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Process C – residential and commercial area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream</td>
</tr>
<tr>
<td>Heating of power substation</td>
</tr>
<tr>
<td>Hot water of residential area</td>
</tr>
<tr>
<td>Hot water of commercial area</td>
</tr>
<tr>
<td>Stream 6 evaporation</td>
</tr>
<tr>
<td>Stream 7 evaporation</td>
</tr>
<tr>
<td>Stream 8 heating</td>
</tr>
<tr>
<td>Stream 9 heating</td>
</tr>
<tr>
<td>Stream 10 heating</td>
</tr>
<tr>
<td>Stream 11 heating</td>
</tr>
<tr>
<td>Stream 12 heating</td>
</tr>
<tr>
<td>Stream 13 heating</td>
</tr>
</tbody>
</table>

* – latent heat of phase change
Price of hot utility is 366 EUR/kWy (prices of natural gas 0.042 EUR/kWh) [ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_and_natural_gas_price_statistics]

Price cold utility is 36 EUR/kWy

Specific price of heat transfer area is 800 EUR/m2

Installation costs with revamp of 1 heat exchanger are 10,000 EUR

The coefficient of nonlinearity of heat transfer area price is 0.87

Plant life is 5 year

Return on investment employed of 10%.
Selection of optimal ΔT_{min}

Process A - $\Delta T_{\text{min}}=10 \, ^\circ\text{C}$

Process B - $\Delta T_{\text{min}}=3 \, ^\circ\text{C}$

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Waste heat identification

Process A - $\Delta T_{\text{min}} = 10 \, ^\circ C$

Process B - $\Delta T_{\text{min}} = 3 \, ^\circ C$

Composite curves
$Q_{H\text{min}}$ – heating targets
$Q_{C\text{min}}$
Waste heat identification

(a) – Process A, $Q_{\text{Hmin}}=267$ kW; $Q_{\text{Cmin}}=320$ kW, $Q_{\text{recovery}}=684$ kW;
(b) – Process B, $Q_{\text{Hmin}}=1328$ kW; $Q_{\text{Cmin}}=485$ kW, $Q_{\text{recovery}}=817$ kW.

International Conference on Smart Energy Systems and
4th Generation District Heating, Copenhagen, 25-26 August 2015
Total Site Analysis

- TS profiles construction with use of stream data of individual processes eliminating heat recovery
- Set initial TS ΔT_{min} between profiles and definition enthalpy intervals created by Sink and Source Profiles
- Calculation HT area (IM levels) and number of units. For each enthalpy interval minimum heat transfer area and number of heat exchangers are calculated
- Calculation of total cost for defined heat exchangers network considering heat transfer area and number of heat exchangers
- Changing ΔT_{min}. Increasing the temperature approach between the TS Profiles and repeating the calculation procedure
- Selection of most profitable solution with minimum total cost
Optimum site heat recovery

Example of total cost of site heat recovery system

Minimum total cost (operating + Investment)

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Total Site targets

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Heat transfer area and units number

\[A_{TSCU} = \sum_{j=1}^{p} \min_{t_{tj} < t_{GU} < t_{tj+1}} \frac{1}{\Delta T_{LM}^C} \left(\sum_{i=1}^{n} \frac{Q_i}{h_i} + \frac{Q_{GU}}{h_{GU}} \right) \]

\[A_{TSHU} = \sum_{i=1}^{l} \min_{t_{tj} < t_{HU} < t_{tj+1}} \frac{1}{\Delta T_{LM}^C} \left(\sum_{j=1}^{m} \frac{Q_j}{h_j} + \frac{Q_{HU}}{h_{HU}} \right) \]

\[A_{TSHR} = \sum_{z=1}^{k} \min_{t_{tj} < t_{IM} < t_{tj+1}} \left(\frac{1}{\Delta T_{LM}^H} \left(\sum_{i=1}^{n} \frac{Q_i}{h_i} + \frac{Q_{IM}}{h_{IM}} \right) + \frac{1}{\Delta T_{LM}^C} \left(\sum_{j=1}^{m} \frac{Q_j}{h_j} + \frac{Q_{IM}}{h_{IM}} \right) \right) \]

\[N_{HR} = \sum_{i=1}^{k} n_i^h + n_i^c \]

\[N_{GU} = \sum_{i=1}^{p} n_i^h \]

\[N_{HU} = \sum_{i=1}^{l} n_i^c \]

Heat transfer area targets

Number of heat exchangers

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Total Site Profiles – case study

Source Site Profile

Cooling water
800 kW

Sink Site Profile

Temperature T, °C

150 Hot utility 2433 kW

100

50

0

1

2

ΔH x 10^-3, kW

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Total Site Profiles – heat recovery

$\Delta T_{\text{min}} = 5^\circ \text{C}$
Hot utility = 1689 kW
Cooling water = 56 kW
$Q_{\text{recovery}} = 744 \text{ kW}$
Results

<table>
<thead>
<tr>
<th></th>
<th>Hot utility (kW)</th>
<th>Cold utility (kW)</th>
<th>Recovery (kW)</th>
<th>Heat transfer area, m²</th>
<th>No of heat exchanger</th>
<th>Investment (EUR)</th>
<th>Saving (EUR)</th>
<th>Payback time (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing site</td>
<td>2,433</td>
<td>800</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Retrofitted site</td>
<td>1,689</td>
<td>56</td>
<td>744</td>
<td>272</td>
<td>8</td>
<td>297,600</td>
<td>182,490</td>
<td>19.6</td>
</tr>
</tbody>
</table>

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Conclusion and future work

- District heating systems can be integrated with industrial systems by Total Site Analysis
- Fuel consumption and harmful emissions can be reduced by site heat recovery
- Heat transfer area and number of units can be targeted
- Conceptual design for technical realisation can be proposed
- Possible future integration and interactions with renewables, CHP units accounting different energy prices
- Potential application not only for Croatian energy systems
Acknowledgements

The financial support by the EC and Croatian Ministry of Science Education and Sports project “CARBEN” (NEWFELPRO Grant Agreement No. 39).
Thank you very much!