
International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, 25-26 August 2015

Contributing global CO₂ mitigation by utilisation of food industry heat into smart Croatian DHS via Total Site heat recovery

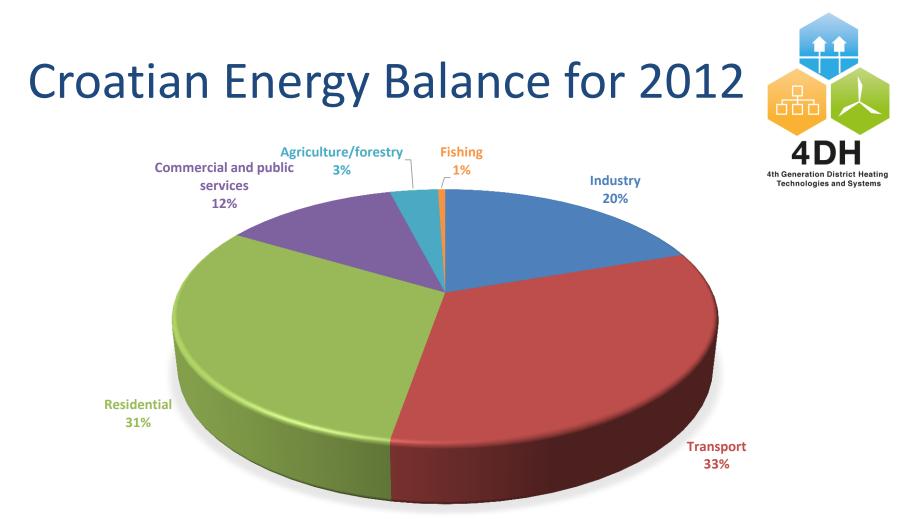
AALBORG UNIVERSITY DENMARK

S. Boldyryev, G. Krajačić*, N. Duic, T. Novosel

Department of Energy, Power Engineering and Environment, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Goran.Krajacic@fsb.hr, tel: +385 1 6168433, Ivana Lucica 5, HR-10002 Zagreb, Croatia.

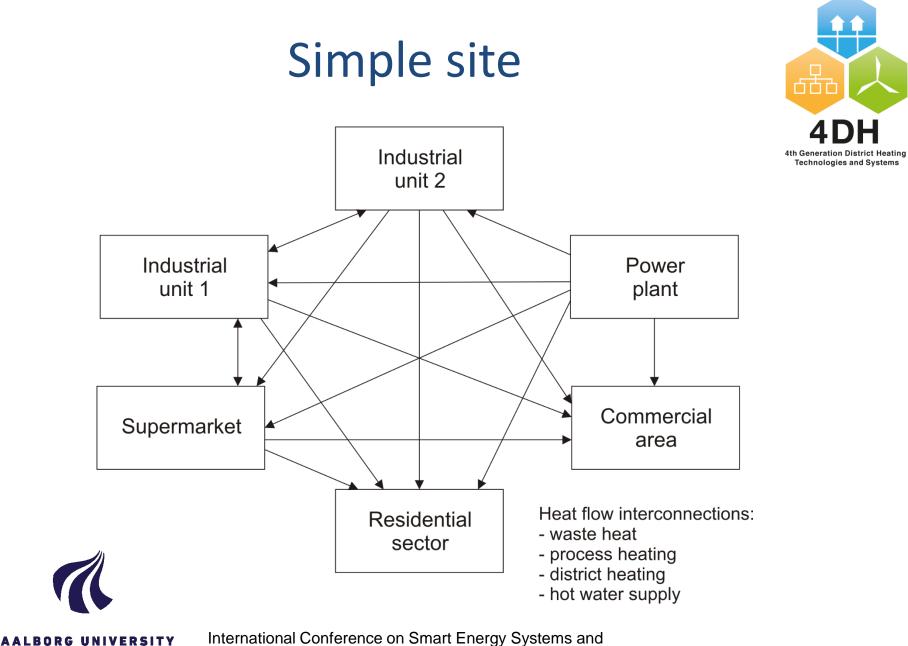
Outline

- Introduction
- Objectives
- Methodology
- Case study
- Results
- Summary and future works



Introduction

- To produce 1 J of food energy 10 J of primary energy is required
- The population growth required the annual energy consumption rise on 24 – 40%
- On the other hand it leads to fast deterioration of environment, to CO₂, NO_x, SO_x, dust, soot and other industrial emissions



Total final consumption 6381 thousand tonnes of oil equivalent (ktoe)

The source is IEA *http://www.iea.org/statistics/statisticssearch/report*

4th Generation District Heating, Copenhagen, 25-26 August 2015

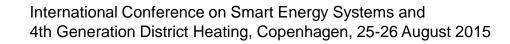
DENMARK

Main challenges

- Is it possible to reduce the energy consumption?
- How much we can save?
- What will be the real energy targets?
- How to estimate an investment level?
- What will be the payback time?

Methodology

Process level


- Data extraction
- Set a cost effective targets for industrial processes
- Waste heat identification

Total Site level

- Total Site Profiles
- Site heat recovery targeting
- Calculation of heat transfer area and units numbers
- Economic indicators

BORG UNIVERSITY

DENMARK

Process level

- Data tables
- Cost data
- Composite curves
- Grand Composites

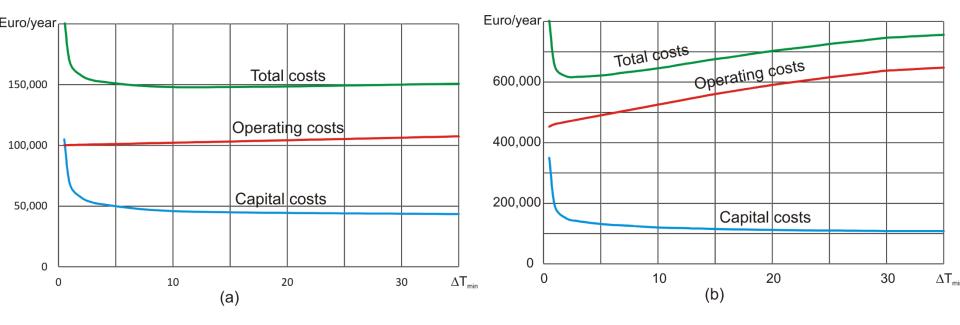
Data collection

Process A – industrial									
Stream	Process B	TS - ind	TT uştrial	CP	ΔΗ	h	eration District Heating nologies and Systems		
Stream	Туре	TS	TT	СР	ΔH	h	_		
Process C – residential and commercial area (kW) $(kW/(m^2 C))$									
Stream	Туре	TS	TT	CP	ΔH	h			
		(°C)	(°C)	(kW/°C)	(kW)	$(kW/(m^2 C))$			
Heating of power substation	cold	50	90	3.490	139.6	1.0			
Hot water of residential area	cold	20	50	16.296	488.9	1.0			
Hot water of commercial area	cold	20	50	6.984	209.5	1.0			
Stream 6 evaporation	cold	109	109	2264*	381.11	6.0	_		
Stream 7 evaporation	cold	114	114	2141*	703.10	6.0	-		
Stream 8 heating	cold	55	90	2.682	93.86	0.8			
Stream 9 heating	cold	60	109	2.721	133.30	0.8			
Stream 10 heating	cold	50	80	1.493	44.80	1.0			
Stream 11 heating	cold	20	36	18.620	298.00	1.0			
Stream 12 heating	cold	45	75	11.640	349.20	1.3			
Stream 13 heating	cold	75	102	5.250	141.80	1.4	-		

* – latent feat of phase change

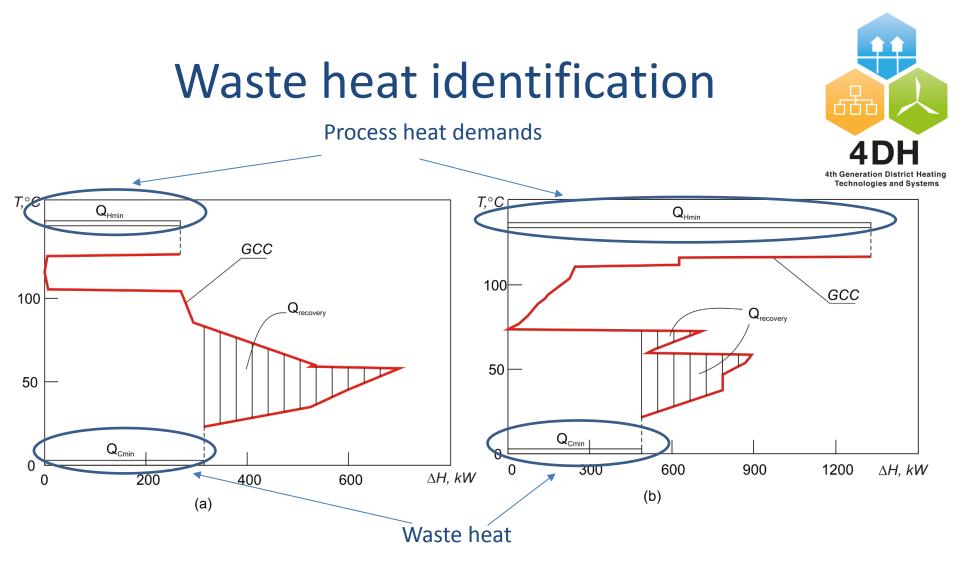
AALBORG UNIVERSITY DENMARK

Data collection



- Price of hot utility is 366 EUR/kWy (prices of natural gas 0.042 EUR/kWh) [ec.europa.eu/eurostat/statisticsexplained/index.php/Electricity_and_natural_gas_price_statistics]
- Price cold utility is 36 EUR/kWy
- Specific price of heat transfer area is 800 EUR/m2
- Installation costs with revamp of 1 heat exchanger are 10,000 EUR
- The coefficient of nonlinearity of heat transfer area price is 0.87
- Plant life is 5 year
- Return on investment employed of 10%.

Selection of optimal ΔT_{min}



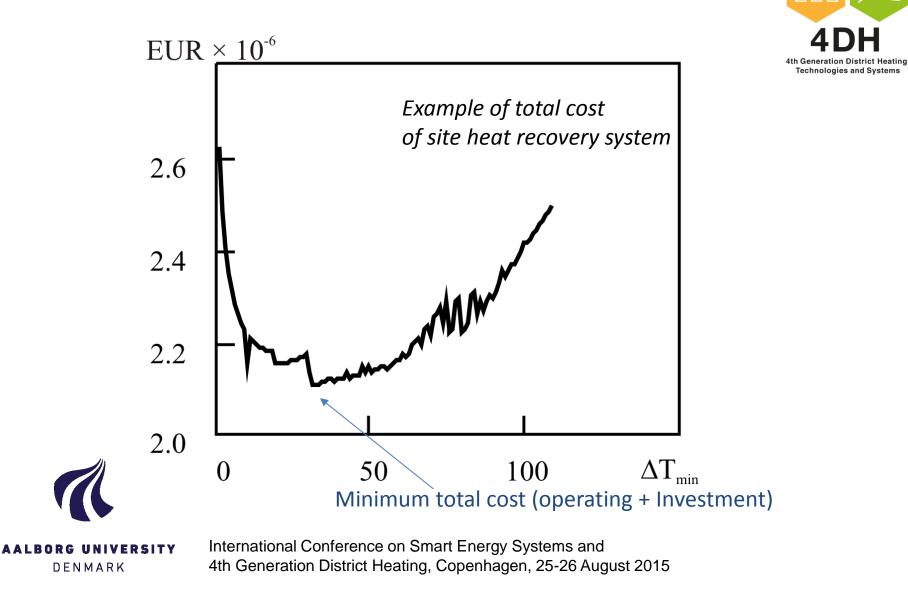
Process A - Δ Tmin=10 °C

Process B - Δ Tmin=3 °C

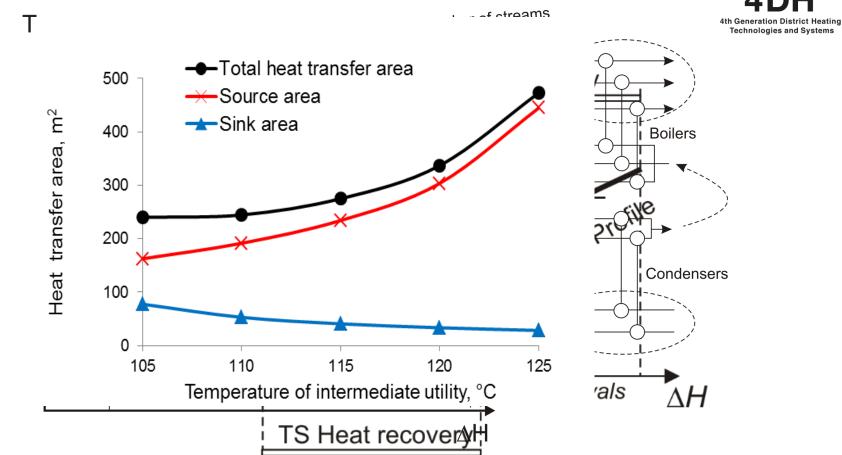
(a) – Process A, Q_{Hmin} =267 kW; Q_{Cmin} =320 kW, $Q_{recovery}$ =684 kW; (b) – Process B, Q_{Hmin} =1328 kW; Q_{Cmin} =485 kW, $Q_{recovery}$ =817 kW.

AALBORG UNIVERSITY DENMARK

Total Site Analysis



- TS profiles construction with use of stream data of individual processes eliminating heat recovery
- Set initial TS ΔT_{min} between profiles and definition enthalpy intervals created by Sink and Source Profiles
- Calculation HT area (IM levels) and number of units. For each enthalpy interval minimum heat transfer area and number of heat exchangers are calculated
- Calculation of total cost for defined heat exchangers network considering heat transfer area and number of heat exchangers
- Changing Δ Tmin. Increasing the temperature approach between the TS Profiles and repeating the calculation procedure
- Selection of most profitable solution with minimum total cost

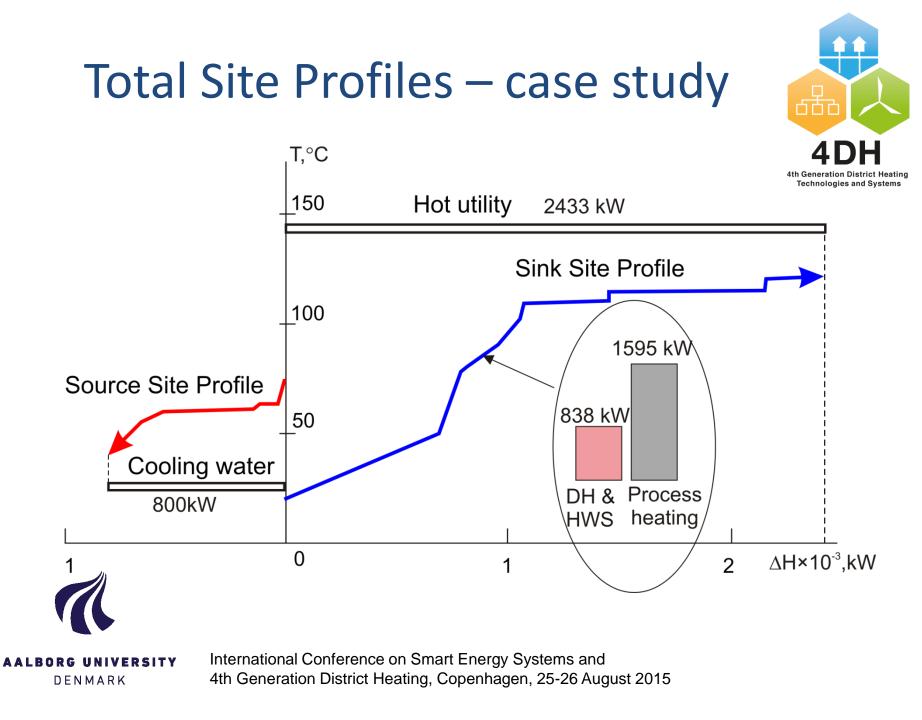


Optimum site heat recovery

占古

Total Site targets

ſГŤ


S. Boldyryev, P. S. Varbanov, A. Nemet, J. J. Klemeš, P. Kapustenko Energy Conversion and Management 87 (2014) 1093–1097

Heat transfer area and units number

Heat transfer area targets

4th Generation District Heating, Copenhagen, 25-26 August 2015

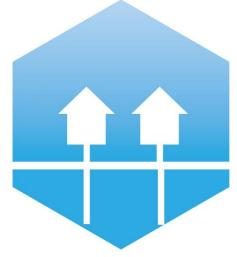
Results

	Hot utility (kW)	Cold utility (kW)	Recovery (kW)		exchanger	Investment (EUR)	Saving (EUR)	Payback time (months)
Existing site	2,433	800	0	—	—	—	—	—
Retrofitted site	1,689	56	744	272	8	297,600	182,490	19,6

Conclusion and future work

- District heating systems can be integrated with industrial systems by Total Site Analysis
- Fuel consumption and harmful emmisions can be reduced by site heat recovery
- Heat transfer area and number of units can be targeted
- Conceptual design for technical realisation can be proposed
- Possible future integration and interactions with renewables, CHP units accounting different energy prices
- Potential application not only for Croatian energy systems

Acknowledgements



The financial support by the EC and Croatian Ministry of Science Education and Sports project "CARBEN" (NEWFELPRO Grant Agreement No. 39).

International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, 25-26 August 2015

AALBORG UNIVERSITY DENMARK 4th Generation District Heating Technologies and Systems

4DH