

疑 Stratego

🕵 Stratego

Stratego mana PlanEnergi

ECOFYS

🕵 Stratego

🕵 Stratego

(a brokel is, its biological low-p-

Comparing Heat Supply to Heat Savings with a Levelised costs approach and an Energy systems approach

Kenneth Hansen Ph.D. fellow in Renewable Energy Planning Aalborg University

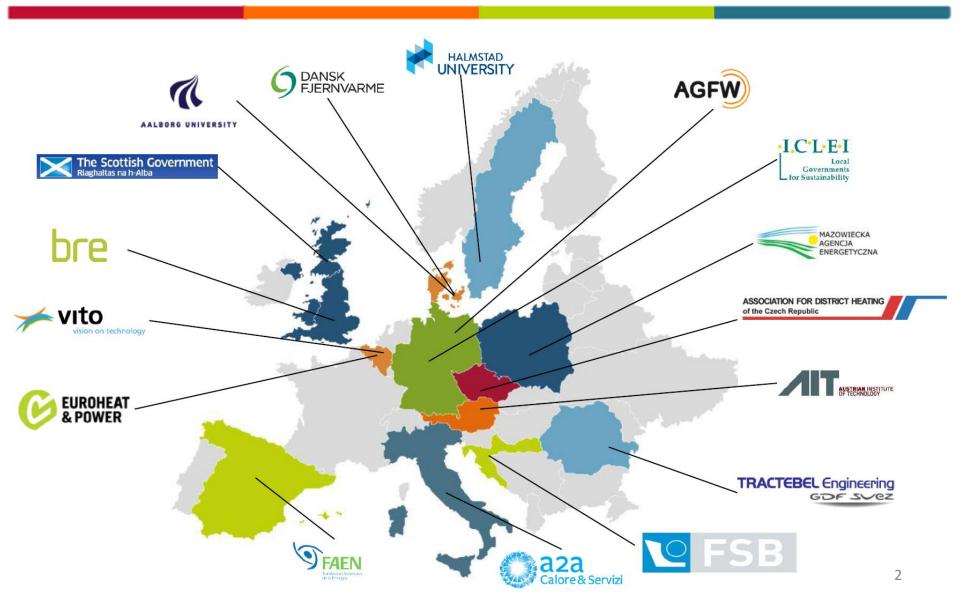
International Conference on Smart Energy Systems and 4th Generation District Heating Copenhagen, Denmark 25 August 2015

Co-funded by the Intelligent Energy Europe Programme of the European Union

Heat Roadmap Europe

🕵 Stratego

Work Package 2


🕵 Stratego

Contention for Content Strengt

🕵 Stratego

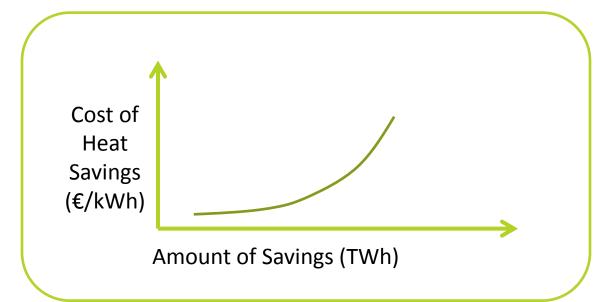
Partners

STRATEGO (Heat Roadmap Europe 3)

- Intelligent Energy Europe co-financed project with 16 partners from 12 countries from 2014 to 2016
- The purpose is to quantify the energy efficiency potential for heating and cooling in 5 EU countries
- Focus in this presentation is only about a small part of the analysis evolving around the hypothesis that there is a point where heat savings become more costly than supplying sustainable heat
- Analysis for four countries: Czech Republic, Croatia, Italy, Romania

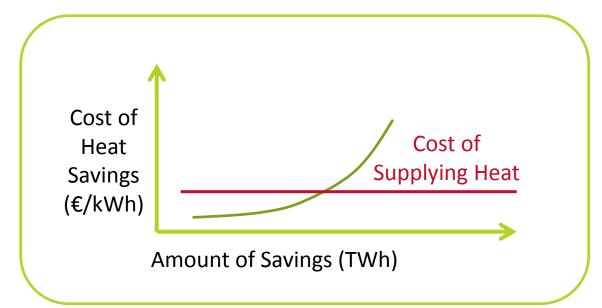
- 1. Heat Savings
- Reduce our demand for heat:
 - → Space heating
 - 🛏 Hot water

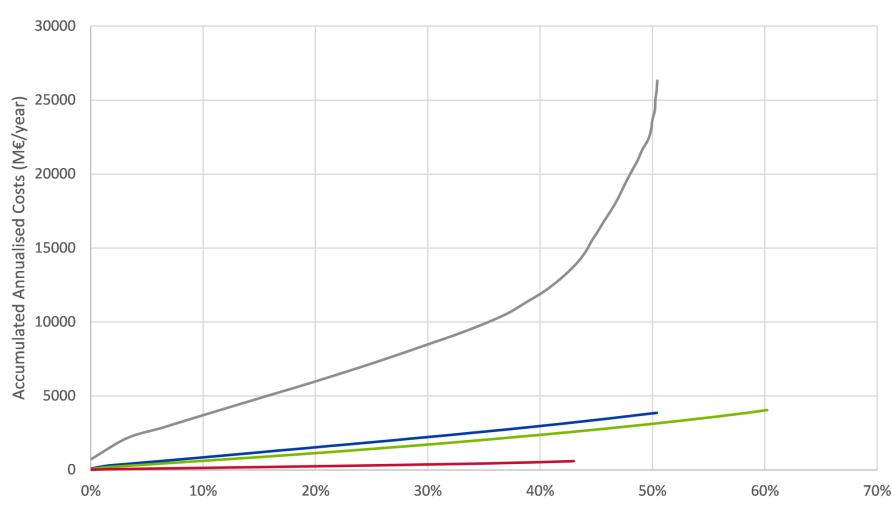
- 2. Urban Heating
- Share a heating network:
 - 🛏 Gas Grid
 - → Water (i.e. district heating)


- 3. Rural Heating
- Use a heating unit in each building:
 - 🛏 Boilers:
 - → Oil
 - 🛏 Biomass
 - 🛏 Heat Pumps
 - 🛏 Electric Heating

The Decision for Each Issue will Affect the Others

How much Heat should we Save?


We should implement heat savings until the price of sustainable supply is less than the marginal price of additional savings

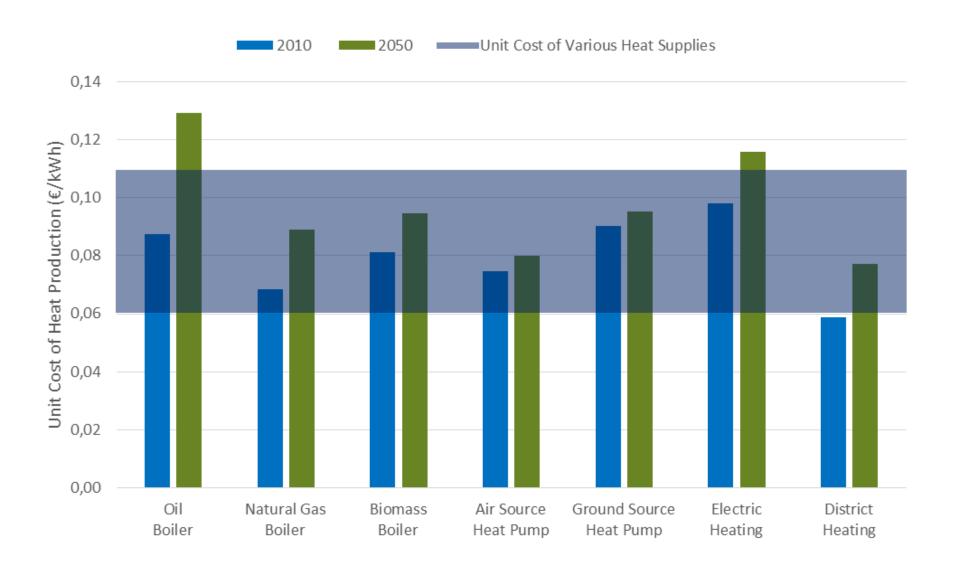

How much Heat should we Save?

We should implement heat savings until the price of sustainable supply is less than the marginal price of additional savings

Heat savings potentials and costs

-RO ——CZ ——IT ——HR

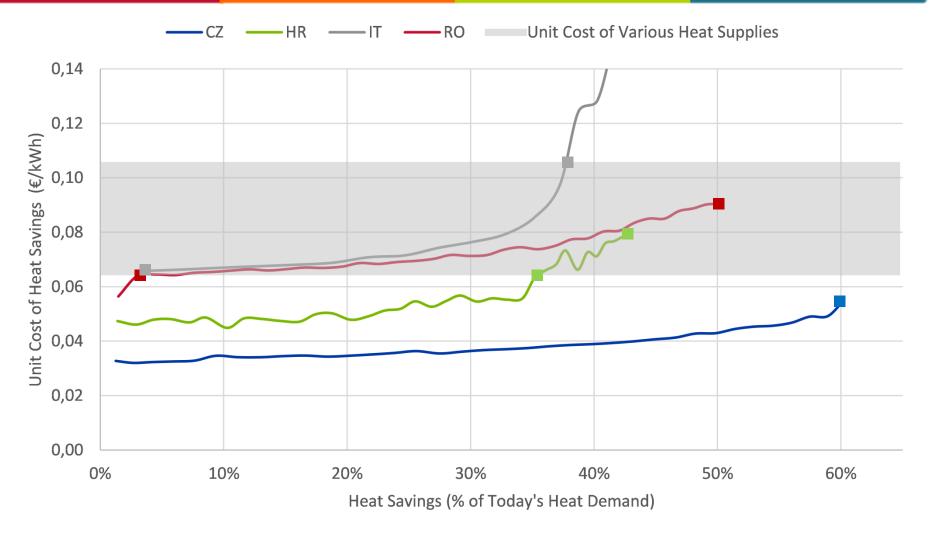
Heat Savings (% of Today's Heat Demand)



Two different approaches

- We did not know which methodology would be preferable so we carried out both types:
 - Levelised costs approach
 - Energy systems approach

Levelised costs approach



- Feasible level of heat savings are analysed when implementing heat savings in a complete energy system perspective (*EnergyPLAN*). This approach also accounts for all the potential impacts and synergies that the heating sector may impose on other sectors.
- The least cost level of heat savings is identified where more or less heat savings will increase the overall costs in each of the four countries
- Analysed heat savings in steps of 10%

Levelised Costs approach results

CZ: 60%

HR: 35-45%

IT: 0-40%

RO: 3-50%

Levelised costs approach

Heat Savings Feasible (% of Today's heat demand)	Cost of Heat Supply €0.06/kWh	Cost of Heat Supply €0.11/kWh
Czech Republic	60%	60%
Croatia	35%	45%
Italy	0%	40%
Romania	3%	50%

Energy systems approach

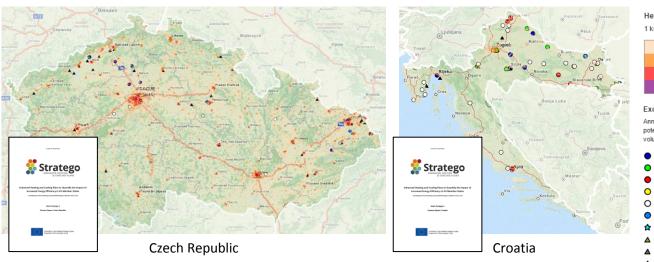
Amount of Each Energy Efficiency Measure in the Heat	Heat Saving level with least costs	
Roadmap Scenarios	Reduction as % of the BAU 2050 Heat Demand	
Czech Republic	40%	
Croatia	40%	
Italy	30%	
Romania	50%	

Stratego Characteristics of two methodologies

Characteristics of the two methods	Levelised Costs approach	Energy System Approach
Calculation of heat supply unit cost	A heat supply unit costs range is calculated	Can potentially be calculated
Calculation of total energy system costs	Not possible	A total cost for the entire energy system
Identification of specific cut-off point	A cut-off range can be identified according to the heat supply unit cost assumed in the future	A specific cut-off point can be identified (in steps of 10%)
Impact on other sectors than heating	Not possible	Direct and indirect impacts across sectors
Ability to measure impacts on other metrics	Not possible	Measures impacts on both economy, energy and environment

Factors that can be captured in an Energy systems approach and not in a Levelised costs approach:

- 1. Less heat capacity is required since the heat demand in each building is reduced
- 2. New heat demand distributions occurs due to lower peak demand
- 3. The electricity sector capacities can be reduced due to the reduced electric heating and heat pump demand
- 4. Excess heat can be utilised between different technologies and systems
- 5. Different fuel mixes are defined according to the demands and operating technologies
- 6. Different operation hours of various technologies (and storage)

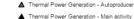

Conclusions

A full Energy systems approach is recommendable as it includes impacts and synergies across sectors

There is a certain point where it becomes more economical to supply heat rather than continuing to save heat, which is proven in both of the methodologies applied

STRATEGO www.stratego-project.eu

Heat Demand Classes


1 km2 densities of calculated heat demand.

Excess heat facilities

Annual excess heat volumes stated refers to maximal potential, not necessarily reflecting practically recoverable volumes

United Kingdom

2050

Heat Roadmap Europe

Co-funded by the Intelligent Energy Europe Programme of the European Union

Questions?

www.heatroadmap.eu www.strategto-project.eu www.SmartEnergySystem.eu

khans@plan.aau.dk