Dynamic Modelling of a District Cooling Network with Modelica

Damien CASETTA
Ph.D student, MINES ParisTech – CLIMESPACE (ENGIE group)
Agenda

- Objectives & Methodology
- Description of the District Cooling System
- Chilled-Water Production Flow Chart
- Centrifugal Chiller Model
- Simulation & Validation Results
- Conclusion & Research perspectives
Objectives & Methodology

• Long-term objective: Optimal control of Chilled-Water Production of a real District Cooling System
 → Detailed representation of main energy equipments

• 1st step: Modelling and Calibration of the Chilled-Water Production Plant (CWPP) with Modelica
 → Modelling of all production modes
 → Relevant boundaries (load, weather and controls as inputs)
 → Validation of model outputs against measured values

AIM OF TODAY’S PRESENTATION
Description of the District Cooling System

• Eastern Part of Paris District Cooling Network
• 44 MW Chilled-Water Production Plant (CWPP)
• Cooling by Seine river
• ≈ 50 substations
Chilled-Water Production Flow Chart

CHILLER + FREE-COOLING MODE

District Cooling Network

Chillers evaporators

Chillers condensers

Cooling secondary

Cooling primary

River
Chilled-Water Production Flow Chart

FREE-COOLING MODE

District Cooling Network

Cooling secondary

Cooling primary

HX1
HX2
HX3
HX4

River

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Chilled-water production statistics

Chilled-water production plant configurations annual statistics

CHILLER MODE

CHILLER + FREE-COOLING MODE

FREE-COOLING MODE

CHILLER MODE

% Hours % Chilled-water production

0% 10% 20% 30% 40% 50% 60% 70%

1 chiller without free-cooling
2 chillers
1 chiller with free-cooling
Free-cooling
3 chillers
4 chillers
5 chillers
6 chillers
7 chillers

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Centrifugal chiller model

CHILLER MODEL

Parameters (DOE-2 model [1]):

- Nominal cooling capacity and COP
- Cooling capacity and COP at full-load as biquadratic functions of entering temperatures
- COP as a function of part-load ratio
- Motor heat losses fraction

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Centrifugal chiller model

Calibration of parameters [2]

Comparison between measured and calculated power input over 1 week

![Graph showing comparison between measured and calculated power input over 1 week.]

- **Calculated**
- **Measured**

Charts:
- MAPE: 6.5%
- CV: 8.9%
- RMSE: 65.0

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Simulation in chiller mode

- Period: 1 week
- Measured controls, inputs and outputs
- Data time step: 10 minutes
- Simulation environment: Dymola
Simulation in chiller mode

Measured Controls

Evaporator pumps speed
Evaporators leaving temperature
Chillers on/off
Condenser pumps speed
Heat exchanger valves on/off
Cooling primary pumps speed
Simulation in chiller mode

Load and weather inputs

Return temperature
Return volume flow rate

Chiller 1 — Chiller 2 — Chiller 3 — Chiller 7

HX1 — HX2 — HX3 — HX8

Entering temperature from river

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Simulation in chiller mode

Outputs to be compared

Supply temperature

Power input required

Leaving temperature to river

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Validation results

Comparison between measured and calculated electricity consumption per equipment over 1 week

- Chillers: +5.4%
- Evaporator pumps: +40.4%
- Condenser pumps: -23.1%
- Cooling primary pumps: +24.9%

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Validation results

Comparison between measured and calculated total electricity consumption over 1 week

Cooling primary pumps
Condenser pumps
Evaporator pumps
Chillers

+6.2%
Validation results

Comparison between measured and calculated power input over 1 week

- Over-estimation with very low demand
- Under-estimation with high peak demand

- MAPE: 10.9%
- CV: 11.8%
- RMSE: 113.0

CHILLER 1
8.8 MW

CHILLER 2
5.8 MW

CHILLER 3
5.8 MW

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Conclusion & Research perspectives

- Satisfactory total power input modelling for the chiller production mode
- Modelling improvements: pumps
- Validation in progress: other production modes
- Towards operational optimization: add a control model, to be optimized
Questions
Thank you for your attention
Pump model

Representation

Hydraulic model [3]

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Pump model

Representation

Power input model [4] [5]

Pump model

Calibration

Comparison between measured and calculated power input

International Conference on Smart Energy Systems and 4th Generation District Heating, Copenhagen, 25-26 August 2015
Validation results

Comparison between measured and calculated CWPP supply temperature over 1 week

- **CHILLER 1**: 8.8 MW
- **CHILLER 2**: 5.8 MW
- **CHILLER 3**: 5.8 MW

- **Significant over-estimation at chiller start-up phases**

Supply chilled water temperature [K] 0.7

RMSE

\[\text{Comparison between measured and calculated CWPP supply temperature over 1 week} \]