

DEMONSTRATION OF 4GDH SOLUTIONS IN A LARGE CITY DEVELOPMENT AREA

INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

TRACK 7: SMART ENERGY SYSTEMS

Copenhagen

25 August 2015

BEING SMART?

- PERSPECTIVE OF A DISTRICT HEATING COMPANY
- Smart energy
- Smart electricity
- Smart district heating
- Smart city

... or just being clever

DELIVER FLEXIBILITY TO THE ELECTRICITY SYSTEM

LARGE ENERGY STORES	Storage capacity	Cost
	(GWh)	(kr/kWh)
Gas store, methane	11000	1
Gas store, hydrogen	3500	
District heating system	300 - 500	3 - 7
Heat pumps outside gas and		
district heating networks	10 - 30	
1.5 million electric cars	30 - 50	300 - 500

How may a district heating company provide flexibility to the electricity system

- Utilize the heat capacity in heat stores, pipelines, and buildings to receive 'surplus' electricity; e.g. by means of electric boilers and heat pumps.
- Utilize the heat capacity to accept lower heat production, allowing lower electricity production.
- If it owns cogeneration facilities, heat and/or electricity production may be increased beyond scheduled production.
- If it owns cogeneration facilities, heat production may be by-passed to produce extra electric power.

SMART OPERATION OF HEAT PUMPS

- A SIMPLE EXAMPLE

1 MJ/s heat pump operated full load (24 hours per day)

replaced by a

2 MJ/s heat pump operated the cheapest 12 hours every day

FEASIBILITY OF SMART HEAT PUMP

Average spot market electricity prices (DKK/MWh), January 2014:

Average spot price

Full-day: 32 €/MWh

12-hours: 28 €/MWh

Saving: 13 %

Average buying price

Full-day: 144 €/MWh

12-hours: 140 €/MWh

Saving: 3 %

Electricity tariff	
Spot market	32 EUR/MWh
Duties and taxes	112 EUR/MWh
Total price	144 EUR/MWh

2 MJ/s heat pump Extra investment 530,000 €. Extra O&M 2,700 €/year.

Electricity saving 12,500 €/year -> Simple pay-back 54 years

In a smart energy system, the major price elements should have a dynamic component

SMART DISTRICT HEATING

Heat storage not only for the sake of the electricity system

Key objective is to reduce expensive peak-load heat generation

6 8 10 12 14 16 18 20 22 24

EFFICIENT ENERGY MANAGEMENT OF BUILDINGS

- Data from smart meters, consumption budgets and degree days based reporting ensures the right knowledge and focus.
- Simple and correct follow-up & know-how
- Training of operational staff is essential

DISTRICT HEATING IS ALREADY SMART

... or just clever?

EnergyLab Nordhavn New Urban Energy Infrastructures www.energylabnordhavn.dk Flexibility from heat and cooling grids Integrated markets and control centers flexibility Fuel - shift Smart charging infrastructure components Measurements and data warehouse Flexible and users Showroom and visualisation

