Optimal multi-stage district heat expansion planning using real options

Romain Lambert Sebastian Maier
Nilay Shah John Polak

Imperial College London

Aalborg University Denmark

4DH
4th Generation District Heating Technologies and Systems
Presentation Outline

1. Rationale
2. Phasing Model
3. Formulation 1: Conditional Value at Risk
4. Formulation 2: Real Options (LS-MC)
5. Example
6. Conclusions and Future Work
Rationale

- UK district heating projects consist of seed networks and fully built out projects
- Phasing is a very important aspect of economic viability
- The net present value approach does not take into account all strategic aspects or flexibility of phasing (including recourse actions)
- Typical NPV or IRR based analysis does not take uncertainty into account (one-off decision for the whole duration of the project)
- Some trade-offs are time dependent
- Inherent uncertainty of feasibility studies
Phasing Model

\[NPV = \sum_{t=0}^{N} DCF_t = \sum_{t=0}^{N} \frac{R_t - C_t}{(1 + r)^t} \]

\(R_t = \text{heat sales} + \text{electricity sales} \)
\(C_t = \text{CAPEX} + \text{OPEX} + \text{REPEX} \)
\(\text{CAPEX} = \text{production units} + \text{network} \)
\(\text{OPEX} = \text{Fuel Costs} + \text{maintenance costs} + \text{pumping costs} + \text{'admin' costs} \)

\[\max_{a_{i,t,s} \in \mathcal{A}} \lambda CVaR_{\alpha}(\{NPV_s, p_s\}_{s \in S}) + (1 - \lambda) \mathbb{E}(\{NPV_s, p_s\}_{s \in S}) \]

s.t.
- Topology constraints (Adjacency of Nodes)
- Chronology constraints
- Energy Flows at each node/vertex
- Hydraulics (pressure drops velocity as pipe sizing constraints)
- CHP/boiler sizing
- Non-anticipativity constraints

Maximize the expected value of the NPV
MILP problem
Integer variables are selection/existence of asset \(a_{i,t,s} \) number \(i \) at time \(t \) for scenario \(s \)

Scenarios to represent uncertainty:
- Connection of future buildings
- electricity and gas prices
- refurbishment rate
Influence diagram and real options

- Option to delay
- Option to expand
- Option to abandon
- Sequencing options
Influence diagram and real options

Representing list of possible states for heat network and possible transitions
Problem Formulation

\[G_t(S_t) = \max_{\delta} \sum_{h \in b^D(S_t)} F_{h,t}(S_t) \cdot \delta_h \]

s.t.

\[\delta_h \in \{0,1\}, \forall h \in b^D(S_t) \]
\[\delta_h \in \mathcal{A}(S_t), \forall h \in b^D(S_t) \]

\[S_{t+\Delta h} = S^M(S_t, \delta_h), \forall h \in b^D(S_t) \]

\[F_{h,t}(S_{i,t}) = \Pi_{h,t}(S_t) + \mathbb{E}_t[e^{-r\Delta h}G_{t+\Delta h}(S_{t+\Delta i,h})], \forall h \in b^D(S_t) \]

Solve optimal stopping problem using dynamic programming (Maier et al, 2015)
Notations

- \mathcal{D} set of decision nodes
- \mathcal{H} set of transitions (real options)
- $F_{h,t}(S_t)$ value of option $h \in \mathcal{H}$ at time $t \in \mathcal{T}_h$ in state $S_t \in S$
- $G_t(S_t)$ optimal value of portfolio of options available at time $t \in \mathcal{T}_D$ in state $S_{i,t}$
- \mathcal{T}_D set of decision dates
- Δ_h duration of options h
- $b^D(S_t)$ the set of incoming transitions for state S_t
- δ_h decisions to exercise any available option at state S_t
- $\mathcal{A}(S_t)$ feasible region (set of linear constraints of possible transitions)
- $\Pi_{h,t}(S_t)$ is the NPV of stochastic net cash flow of option h at state S_t
Influence diagram formulation
• Determine aggregate steps, energy flows, capex, opex, repex, transition costs, operating costs using ‘robust’ MILP model
• Use consistent aggregate candidate steps and applying real option sequencing optimization using a simplified influence diagram and the LS-MC method.

original topology

Aggregate steps

Step-wise expansion/growth
Example

• Hypothetical example of UK eco-town of Marston Vale. 47 nodes.
• Production units: peak boilers (pre-existing) and gas engines CHP units.
• UK department of energy and climate change electricity and gas prices forecasts
• Uncertain future demand due to energy efficiency measures and uncertainty of future connections for some new developments
• 10,000 Monte-Carlo simulations for different electricity and gas prices paths.

Example
Conclusions and Future Work

• Real options allows for the representation of the modular nature of DHN expansions
• Real options and stochastic programming are useful to represent the inherent uncertainty surrounding DH infrastructure projects

Future work #1: real life case study on London Borough of Islington Network, integration with UK national heat map

Future work #2: represent co-evolution of heat supply and demand and interaction with electricity grid (game theoretical? agent based modelling?)
References

• Maier, S., Polak, J., 2015. Appraising a Portfolio of Interdependent Physical and Digital Urban Infrastructure Investments: A Real Options Approach.

• National Heat Map: http://tools.decc.gov.uk/nationalheatmap/

Acknowledgements:
The financial support of the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 314441 (CELSIUS) is gratefully acknowledged.