Assessing impacts of a regional collaboration on large-scale excess heat utilization

Erik O. Ahlgren, Akram Sandvall, Tomas Ekvall*
Dept of Energy and Environment, Chalmers Univ of Technology
*IVL Swedish Environmental Research Institute

Smart Energy Systems and 4th Generation District Heating
Copenhagen, Aug 25-26, 2015
Smart heat synergies

- CHP waste incineration
- Heat storage
- Geothermal
- Intermittant electricity
- Transport biofuel production
- Industrial waste/surplus/excess heat

Industrial excess heat

Challenges

• Unknown energy system impacts
• Uncertain environmental impacts
• High investment cost
 – Lock-in effects?

➔ Sustainable?
Questions

• What are the impacts on the energy system and its CO₂-emissions of a large-scale excess heat utilisation?
• Is it economically sustainable?
• Is it sustainable from a broader perspective?
Methodology

- Case study
- Local and regional scales (regional biomass market)
Coincidence

Parallel processes

• Academic project/s
 — Industrial process engineering
 — Energy systems analysis
 — Energy market studies

• Actors
 — Chemical industries
 — DH utilities
 — The region

→ Project + reference/stakeholder groups
Common case

The Stenungsund case

Project:

West Sweden collaboration on industrial excess heat
The case - local

50-55 km

Stenungsund

Kungälv

Gothenburg & Partille

Mölndal
Västra Götaland (VG)
Industrial heat extraction

- Different levels requires various degrees of collaboration
- Extraction costs input to system calculations
DH today

DH in the region:

• Biomass
• Waste heat (MSW incineration + Refineries)
• NGCC
• Heat pumps
Unused biomass

- Co-combustion with coal (export)
- CHP elsewhere
- Biofuel production
Regional biomass supply curve

- Forest residues (Tops and Branches)
- Forest residues (Stumps)
Climate policy scenarios

- 450PPM or BASE (450 ppm)
- NEWPOL (New Policies)

Sensitivity analysis

- No NG (after 2030)
- REHD (reduced heat demand)
- LIC (50% lower pipeline cost)
- INTRATE
- REFINERY (cont’d operation)
- RES-S (cont’d el.certificates)
- NOSNG (NO alternative regional biomass demand)
Optimisation modeling

- MARKAL_West Sweden
- Time horizon: 2010-2050
- Load curves
- 37 DH system represented
 - Investment opportunities
- Transport biofuel production
Assumptions

• Marginal electricity
 — Short-term
 — Long term (built)
Results
Does the model build the pipeline?

- Is this solution providing more welfare (more cost-efficient) that any other solution to supply the heat demand?
Resulting cost-optimized excess heat capacity
Change - regional district heat delivery
System cost change (I)
Marginal cost change (Göteborg)
Change - CO2-emissions

- CO2 emissions from DH systems in VG
- CO2 from transport
- Net CO2 emissions with marginal electricity effects and transport included

<table>
<thead>
<tr>
<th>Year</th>
<th>450PPM</th>
<th>NEWPOL</th>
<th>450PPM</th>
<th>NEWPOL</th>
<th>450PPM</th>
<th>NEWPOL</th>
<th>450PPM</th>
<th>NEWPOL</th>
<th>450PPM</th>
<th>NEWPOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2025</td>
<td>-600</td>
<td>0</td>
<td>-400</td>
<td>0</td>
<td>-200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2030</td>
<td>-400</td>
<td>0</td>
<td>-200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2035</td>
<td>-200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2040</td>
<td>0</td>
</tr>
<tr>
<td>2050</td>
<td>0</td>
</tr>
</tbody>
</table>
Other sustainability impacts?

- Acidification
- Eutrophication
- Job creation
- Risk
Conclusions

Investment profitable?

In most tested cases

Climate?

Dependent on perspective and marginal electricity

Generally?

Complex system effects

Resource efficiency!
Process learning

- Collaboration
- Round-table discussions
 - Energy system model
Will it be built?
Thank you!

Project funding from
The Swedish Energy Agency,
The Stenungsund Chemical Industries,
The District Heat Utilities in Göteborg, Kungälv och Stenungsund, the VG-region and
the 4DH-project
is gratefully acknowledged.