3RD INTERNATIONAL CONFERENCE ON
SMART ENERGY SYSTEMS AND
4TH GENERATION DISTRICT HEATING
COPENHAGEN, 12–13 SEPTEMBER 2017
Optimizing thermal energy storage in 4GDH

Bram van der Heijde
Annelies Vandermeulen
Dieter Patteeuw
Robbe Salenbien
Lieve Helsen
Novelties

- Framework for optimal TES integration
- Optimization model for DHC pipes
- Synthetic neighborhood heat loads
Context – EFRO-SALK GeoWatt Project
“Towards a Sustainable Energy Supply in Cities”

Research topics
- Optimal design
- Thermal network control
- Flexibility
- Geothermal energy
- Fault detection
- Building models

Common case
- City of Genk (B)

Illustration by Annelies Vandermeulen
Aim & Objectives

FINAL: Optimize storage size and location in 4DH

This presentation:
- Set up optimization framework
- Model selection
- Data collection
Framework

Data
Heat demand, weather...

Control problem
Linear optimization

TES Parameters

Objective
e.g. min Energy

Parameter variation algorithm
Framework

Data
Heat demand, weather...

Control problem
Linear optimization

Objective
e.g. min Energy

TES Parameters

Parameter variation algorithm
Aggregated heat demand

Average occupancy for N_i SFH

Detached SFH

Semi-detached SFH

Terraced SFH

$\times N_D$

$\times N_{SD}$

$\times N_T$

Simultaneity

\hat{Q}
Case Genk
Framework

Control problem
Linear optimization

Objective
e.g. min Energy

Parameter variation algorithm

TES Parameters

Data
Heat demand, weather...
Control optimization

- Linear, fixed nominal temperature levels
- Predefined pipe diameters

Novel:

- Model of mass and heat flow in pipes (van der Heijde *et al.*, 2017)
- \dot{Q} and \dot{m} decoupled, except at demand

Pipe model

- Fixed supply and return T to calculate heat losses
- Linear model
- Integers for flow direction

Network nodes

<table>
<thead>
<tr>
<th>Component</th>
<th>Temperatures</th>
<th>Mass flow rate</th>
<th>Heat flow rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>Fixed</td>
<td>Variable</td>
<td>Variable</td>
</tr>
<tr>
<td>Heat demand</td>
<td>Fixed</td>
<td>Preset</td>
<td>Preset</td>
</tr>
<tr>
<td>Solar thermal</td>
<td>Fixed</td>
<td>Preset</td>
<td>Preset</td>
</tr>
<tr>
<td>Central heat production</td>
<td>Floating</td>
<td>Variable</td>
<td>Variable</td>
</tr>
</tbody>
</table>

Heat and mass flow balance in every node

But $\dot{Q} = \dot{m} \cdot c_p (T_H - T_L)$ only valid at fixed components

Source:
Preliminary results
Preliminary results
Conclusion

- Framework for optimal TES integration
- Optimization model for DHC pipes
- Synthetic neighborhood heat loads

Future work

- Storage optimization loop
- Implement representative weeks
- Evaluate different objective functions
References

Context – EFRO-SALK GeoWatt Project

Techno-economical boundary conditions
Heat production
Thermal network control and flexibility
Thermal storage

Building modelling
Building simulation
Parametrisation

Fault detection in substations
Optimal routing
Case Genk

Building Count Map

©Bing Maps 2017