Agent-based modelling for the thermal energy transition of natural gas dependent neighborhoods
Agent-based modelling for the thermal energy transition of natural gas dependent neighborhoods

ir Graciela del Carmen Nava Guerrero
PhD Candidate – TU Delft
g.d.c.navaguerrero@tudelft.nl

Prof dr ir Zofia Lukszo
dr Helle Hvid Hansen
dr ir Gijsbert Korevaar (presenter)
Supervisors – TU Delft

Programme: Smart Energy Systems in the Built Environment (SES-BE)
Project E: Modelling Lab for smart grids, smart policies and smart entrepreneurship
Team members

TU Delft

Technology, Policy and Management

Values Technology and Innovation

Multi-Actor Systems

Engineering Systems and Services

Transport and Logistics

ICT

Energy and Industry

Zofia Lukszo

Helle Hvid Hansen

Gijsbert Korevaar

Graciela Nava
Energy transition in the European Union

Targeted reductions in greenhouse gas emissions

2050
Down to 80% of 1990 levels

2040
Down to 60% of 1990 levels

2030
Down to 40% of 1990 levels

Heating and Cooling sector

50% of energy consumption

Buildings have old boilers and low renovation rates.

59% of gas consumption

Renewables are not widely used in the sector.

Heat from industries is being wasted.

Smart Energy Systems in the Built Environment (SES-BE)

Smart Energy Management and Services in Buildings and Grids

Academic partners

TU Delft
CWI
TU/e

Industrial partners

Royal HaskoningDHV
Alliander
Project E: smart grids, smart policies and entrepreneurship modelling lab
Research approach and methods

- Socio-technical perspective
- Theory of complex adaptive systems
- Agent-based modelling
Research approach and methods

Socio-technical perspective

- Physical and social networks
- Interaction under rules (institutions)

De Bruijn & Herder (2009)

Moncada et al. (2017)
Research approach and methods

Theory of complex adaptive systems

- Systems’ emergent behavior
- Learning and adaptation

Macal & North (2005), Nikolic & Kasmire (2013)
Research approach and methods

• Autonomous agents
• Bounded rationality

Jennings (1998), Macal and North (2005)
Recent work

ABMUS 2018
The 3rd Workshop on Agent-based modelling of urban systems

http://modelling-urban-systems.com/abmus2018

Research question
How can a Dutch neighborhood transition from natural gas-based to natural gas-free heat supply over the coming years while meeting the neighborhood’s heat demand?
Modelling questions

1. Which *combinations of household’s characteristics* lead to low natural gas consumption and low expenses at the end of the simulation?

2. What are *promising combinations of technologies and insulation levels* with which low natural gas consumption and low expenses were achieved?

3. How would the *cost of heat supply* be affected by promising combinations of technologies and insulation levels?
System conceptualization

*AHO: association of house owners

Agent-based model

http://modelling-urban-systems.com/abmus2018
KPIs after 20 simulated years

Percentage of buildings where households invest in building-wide solutions

0%, 50% or 100%

http://modelling-urban-systems.com/abmus2018
Results when households invest individually

All households have/are:
- Able to invest within 0-1 simulated year.
 - More than 10 years as time horizon.
- Able to compare investments.
- Environmentally oriented

Heat technologies and insulation
- Immediately:
 - Replaced boilers with aerial heat pumps.
 - Highly insulated dwellings.
- 15 years later:
 - If time horizon > 15 years, no change.
 - Else, replaced aerial heat pumps with radiators.

Cost of heat supply
- Likely similar to that of keeping boilers.

http://modelling-urban-systems.com/abmus2018
Outlook

• Exploring long term production contracts.

• Applying the perspective of socio-technical systems to modelling and simulation.

• Research question:
 • Under which contractual conditions could a district heating network with a single supplier transition towards a lower greenhouse gas emissions system?
Keep in touch

Dr. ir. G. (Gijsbert) Korevaar
Assistant Professor on Industrial Symbiosis
Faculty of Technology, Policy and Management
Delft University of Technology

Jaffalaan 5 (room a3.200)
2628 BX Delft
g.korevaar@tudelft.nl
+31 15 278 3659

LinkedIn: http://nl.linkedin.com/in/gijsbertkorevaar