

Flexibility in thermal grids – a review of short-term storage in distribution networks

Jay Hennessy – Industry PhD Student

13 November 2018

4th International Conference on Smart Energy Systems and 4th Generation District Heating, Aalborg, 13–14 November 2018

RISE Research Institutes of Sweden
Built Environment
Energy and circular economy

Review

- Flexibility in thermal grids
- Review scope: district heating distribution networks
- Results, pros/cons, knowledge gaps
- Conclusions

Short-term storage

Electricity

Renewables % of electricity consumption

Sweden 2020–2040

Thermal grid flexibility

Review scope

- Short-term storage
- Thermal grid distribution networks
 - Centralised sensible storage tanks
 - Network storage (pipeline contents)
- Excluded
 - Distributed storage tanks
 - Network-connected building inertia

Centralised storage tanks

Results

- Nearly all combined heat and power plants have storage (EU)
- Size: 0.1% of annual heat demand
 e.g. in Sweden 42 GWh vs 156 GWh
- Cost is 500–2000 EUR/MWh (electricity 50–100 times more)
- Case: Sweden
 - 62% of district heating have storage
 - 64% of this available for flexibility

Advantages/disadvantages

- √ Often already exist
- **√**Low cost
- ✓ Decreases system operating cost
- ✓ Extends into medium-term storage

- ×Payback period may exceed 10 yrs
- XNot all systems have storage tanks

Network storage

Results

- Pre-loading heat is used for peak shaving of heat load
- Heat storage allows increased renewable energy integration
- Storage capacity for Denmark estimated to be 10% of tanks
 - Case Helsinki, Finland: 1.2 GWh
- Different temperature increases used: 10 K, 15 K, 20 K
- Increased cycling causes fatigue

Advantages/disadvantages

- ✓ Minimum investment needed
- √ Some amount available in all systems
- XIncreased fatigue on components
- ×Decreased efficiency (but...)

Growing interest

- Europe
 - Finland, Belgium, Croatia
- China
 - Jilin Province, Heilongjiang Province

Knowledge gaps

Centralised storage tanks

- Designed capacity and current uses are unclear
 - spare capacity hard to estimate at national scale

Network storage (pipeline contents)

- Storage capacity is not standardized
- Modelling does not account for component fatigue
- No estimation of threshold size of network for storage
- No studies look at scaling in detail

Conclusions

- Scope: centralised and network storage
- Strong potential for storage to increase flexibility
- Implementations of network storage are rare...
- Accurate calculation of national flexibility potentials prevented by:
 - Impacts on physical components not considered
 - Capacity limitations unclear
 - Standardised methods needed accounting for supply temperature, fatigue, and effect of return temperature

References

- Chen, X., Kang, C., Malley, M. O., Xia, Q., Bai, J., Liu, C., Sun, R., Wang, W. and Li, H. (2015) 'Increasing the Flexibility of Combined Heat and Power for Wind Power Integration in China: Modeling and Implications', 30(4), pp. 1848–1857. Available at: http://iiesi.org/assets/pdfs/ieee-tpwrs-2015.pdf.
- Fraende, M. and Reuters (2011) *Denmark aims for 100 percent renewable energy in 2050*. Available at: https://www.reuters.com/article/us-denmark-energy/denmark-aims-for-100-percent-renewable-energy-in-2050-idUSTRE7AO15120111125 (Accessed: 19 March 2018).
- German Federal Ministry of Economics and Technology (2010) Energy Concept for an Environmentally Sound, Reliable and Affordable Energy Supply. Available at: https://www.osce.org/eea/101047.
- Government Offices of Sweden (2016) Agreement on Swedish energy policy. Available at: http://www.government.se/articles/2016/06/agreement-on-swedish-energy-policy/ (Accessed: 19 March 2018).
- Hennessy, J., Li, H., Wallin, F., Thorin, E., (no date) Flexibility in thermal grids: a review of short-term storage in district heating distribution networks. Accepted for publication in Energy Procedia.
- Nugent, T. (2011). Churchill Gardens accumulator tower. Available at: https://www.geograph.org.uk/photo/2321693 (Accessed: 13 Nov 2018).
- Sweco (2017) Personal communications with Jay Hennessy, 29 September 2017.

Questions?

Jay Hennessy jay.hennessy@ri.se +46 73 810 6005

@jayjhennessy

RISE Research Institutes of Sweden **Built Environment** Energy and circular economy

