Recommendations for Combined District Heating and Cooling Networks

Federico Bava (fb@planenergi.dk)
Agenda

1. The FLEXYNETS concept
2. Potential advantages
3. Pre-design numerical tool
 – Results & discussions
4. Conclusions
The FLEXYNETS concept

- The FLEXYNETS concept consists of a distribution network that works at “neutral” temperatures.

- Reversible HPs exchange heat with the network on the demand side. In this way, the network can provide simultaneously heating and cooling.
Potential advantages

- The FLEXYNETS concept has the following potential advantages:
 - Simultaneous supply of heating and cooling
 - Recovery of condensing heat from cooling demand
 - Lower heat losses from the network
 - Lower installation cost for the network
 - Direct exploitation of low-temperature heat sources
Principle scheme (winter)

- HP (heating) with Q_{evap}
- HP (cooling) with Q_{cond}
- Waste Heat with Q_{waste}
- Central heater
- Central cooling unit
- $T_{\text{DH,s}}$
- $T_{\text{DH,r}}$

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018
#SES4DH2018

Aalborg University Denmark
Principle scheme (summer)
General parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Rome</td>
<td></td>
</tr>
<tr>
<td>Heating demand</td>
<td>76</td>
<td>GWh/y</td>
</tr>
<tr>
<td>Cooling demand (nominal)</td>
<td>34</td>
<td>GWh/y</td>
</tr>
<tr>
<td>Waste heat available</td>
<td>59</td>
<td>GWh/y</td>
</tr>
<tr>
<td>Space heating temperatures</td>
<td>50 – 30</td>
<td>°C</td>
</tr>
<tr>
<td>Space cooling temperatures</td>
<td>10 – 15</td>
<td>°C</td>
</tr>
<tr>
<td>Central heater</td>
<td>Gas boiler</td>
<td>-</td>
</tr>
<tr>
<td>Price of electricity (private)</td>
<td>200</td>
<td>€/MWh</td>
</tr>
<tr>
<td>Price of electricity (industrial)</td>
<td>100</td>
<td>€/MWh</td>
</tr>
<tr>
<td>Price of natural gas</td>
<td>30</td>
<td>€/MWh</td>
</tr>
<tr>
<td>Price of waste heat</td>
<td>10</td>
<td>€/MWh</td>
</tr>
<tr>
<td>FLEXYNETS supply temperature</td>
<td>25</td>
<td>°C</td>
</tr>
</tbody>
</table>
Profiles

- Heating demand (all cases, 10-18)
- 100% cooling demand (cases 12, 15, 18)
- Waste heat (60%) (cases 16, 17, 18)
Results (i)

Equivalent annual cost [M€/year]

- DH, 25% cool.
- FL, 25% cool., 0% WH
- FL, 25% cool., 60% WH
- DH, 100% cool.
- FL, 100% cool., 0% WH
- FL, 100% cool., 60% WH

Legend:
- Cap. cost of DH network
- Operation cost of heaters
- Cap. cost + fixed O&M of cooling units
- Operation of HP (heating)
- Pumping cost
- Cost of excess heat
- Operation cost of cooling units
- Operation of HP (cooling)
- Cap. cost + fixed O&M of substations
- Cap. cost + fixed O&M of reversible HP
- Cap. cost + operation of central chiller

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018
#SES4DH2018
Results (ii)

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018
#SES4DH2018
Conclusions

The FLEXYNETS concept can be competitive against conventional DH in the following scenarios:

- Low electricity prices
- Lower HP installation prices
- Presence of cooling demand
- Abundant waste heat at low temperature

Under the right boundary conditions, FLEXYNETS promises to offer

- Competitive price with respect to conventional DH
- Equivalent installation costs for the network
- Lower CO2 emissions and primary energy
Thank you for your attention!

More information available at www.flexynets.eu

This document has been produced in the context of the FLEXYNETS Project. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 649820. The European Commission has no liability for any use that may be made of the information it contains.
<table>
<thead>
<tr>
<th>Scenario</th>
<th>Settlement typology</th>
<th>Location</th>
<th>Heating price [€/MWh]</th>
<th>Cooling price [€/MWh]</th>
<th>Total CO₂eq [kton/year]</th>
<th>CO₂eq from electricity [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL – 25% cooling – 0 WH</td>
<td>MFH-45</td>
<td>Rome</td>
<td>75</td>
<td>77</td>
<td>20.9</td>
<td>38.9%</td>
</tr>
<tr>
<td>FL – 100% cooling – 0 WH</td>
<td>MFH-45</td>
<td>Rome</td>
<td>66</td>
<td>74</td>
<td>23.6</td>
<td>48.3%</td>
</tr>
<tr>
<td>DH – 25% cooling – 0 WH</td>
<td>MFH-45</td>
<td>Rome</td>
<td>53</td>
<td>70</td>
<td>20.6</td>
<td>2.9%</td>
</tr>
<tr>
<td>DH – 100% cooling – 0 WH</td>
<td>MFH-45</td>
<td>Rome</td>
<td>53</td>
<td>85</td>
<td>22.4</td>
<td>10.6%</td>
</tr>
<tr>
<td>FL – 25% cooling – 60% WH</td>
<td>MFH-45</td>
<td>Rome</td>
<td>66</td>
<td>77</td>
<td>13.2</td>
<td>61.3%</td>
</tr>
<tr>
<td>FL – 100% cooling – 60% WH</td>
<td>MFH-45</td>
<td>Rome</td>
<td>58</td>
<td>74</td>
<td>16.5</td>
<td>68.8%</td>
</tr>
<tr>
<td>FL – 25% cooling – 60% WH PTES</td>
<td>MFH-45</td>
<td>Rome</td>
<td>70</td>
<td>77</td>
<td>8.2</td>
<td>99.1%</td>
</tr>
</tbody>
</table>
Cooling demands – no waste heat

<table>
<thead>
<tr>
<th>Equivalent annual cost [M€/year]</th>
<th>FL - 25% cooling</th>
<th>DH - 25% cooling</th>
<th>FL - 100% cooling</th>
<th>DH - 100% cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap. cost of DH network</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation cost of heaters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation cost of cooling units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation of HP (cooling)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- FL - 25% cooling
- DH - 25% cooling
- FL - 100% cooling
- DH - 100% cooling

- Cap. cost of DH network
- Operation cost of heaters
- Operation cost of cooling units
- Operation of HP (cooling)