Impact of heating planning on the economic viability of district heating in Brasov-Romania

Mostafa Fallahnejad*, Richard Büchele
13 November 2018
Contents

I. DH in Brasov

II. DH area definition based on existing networks
 I. ProgRESsHEAT project
 II. Scenarios

III. DH area definition using GIS layers

IV. Result comparison

V. Conclusion
Contents

I. DH in Brasov
II. DH area definition based on existing networks
 I. ProgRESsHEAT project
 II. Scenarios
III. DH area definition using GIS layers
IV. Result comparison
V. Conclusion
DH in Brasov

• Primary purpose:
 – To supply steam to the industry consumers,
 – To supply hot water to the residential consumers.

• Inefficiency in Brasov DH system:
 – Shutdown of industrial consumers in 1990 -> Oversized pipelines for remaining consumers
 – Lack of coherent policy in reviving the DH system
 – Loss of further consumers.

• In the recent years, the Local Counsel has established new actions toward increase of DH efficiency.
Contents

I. DH in Brasov

II. DH area definition based on existing networks
 I. ProgRESsHEAT project
 II. Scenarios

III. DH area definition using GIS layers

IV. Result comparison

V. Conclusion
progRESsHEAT project in Brasov

• ProgRESsHEAT project (H2020): aimed to support the market uptake of existing and emerging renewable technologies.

• Results among all, include policy recommendations for Brasov’s DH system:
 – provision of long-term loans for investments into the network infrastructure
 – implementation of heating and cooling planning to define zones that are preferable for DH

• DH areas were defined by areas around the existing distribution network

• Two scenarios were developed to study the least cost combination of heat savings, district heat and individual supply.
 – Simple socioeconomic perspective
 – Private economic perspective
Alternative Scenario
Private economic calculation

- Private economic calculation:
 - Investment in generation facilities
 - Investment in grids (For 50% of the grid that is not renovated so far.)
 - VAT and cost for connection of customers are NOT considered.

Reference:

Sensitivity of heat selling prices to sold district heat

Reference:
Contents

I. DH in Brasov

II. DH area definition based on existing networks
 I. ProgRESsHEAT project
 II. Scenarios

III. DH area definition using GIS layers

IV. Result comparison

V. Conclusion
DH area definition using GIS layers

- Input GIS Layers from Hotmaps* project (H2020 project):
 - European heat demand density map - 1ha resolution
 - European plot ratio map - 1ha resolution

- For each pixel of HDM in each year within the investment horizon (m years) is calculated:
 - Annual heat demand \(D_t \) based on expected accumulated energy saving,
 - Annual Supplied heat by DH system \(Q_t \) based on market share \((MS_0 \& MS_m) \),
 - Distribution grid investment cost as proposed by Persson & Werner** (from Swedish experience).

\[
D_t = D_0 \cdot \sqrt{1 - S}^t \\
0 \leq S \leq 1 \quad ; \quad t \in \{0, 1, 2, ..., m\}
\]

\[
Q_t = D_t \cdot \left[MS_0 + t \cdot \frac{MS_m - MS_0}{m} \right]
\]

\[
L = 1 / w = 1 / \left(61.8 \cdot e^{-0.15} \right)
\]

\[
d_a = 0.0486 \cdot \ln \left(\frac{Q_t}{L} \right) + 0.0007
\]

\[
Inv_T = \frac{C_{1,T} + C_{2,T} \cdot d_a}{\left(\sum_{t=0}^m \frac{Q_{T+t}}{(1 + r)^t} + \sum_{t=m+1}^n \frac{Q_{T+m}}{(1 + r)^t} \right) / L}
\]

* www.hotmaps-project.eu
Coherent areas

- Outputs of this step are:
 - Coherent areas
 - DH potential in coherent areas
 - Distribution grid cost in coherent areas
Grid model

- The aim of grid model is to supply as much coherent areas as possible with existing heating sources and at the same time maintain the whole system economic.

- The model parameters are:
 - Center-to-center Euclidean distances between coherent areas,
 - Available heat sources and their cost functions (fix and operating costs),
 - Supplied heat by DH system in each coherent area,
 - Available range of pipeline capacities and their specific costs

- The main model variables are:
 - Binary variable for the coherent area,
 - Binary variable for the heat sources,
 - Binary variable for the pipelines,
 - Heat capacities that flow through pipelines.

- Objective function (revenue oriented prize-collecting problem)
 - Maximize difference between heat sale revenue and transmission line costs

\[
\text{max } \text{heat}_\text{sale}_\text{price} \times \sum_i Q_{\text{max},i} \times q_i - \sum_i \sum_j \text{TLC}_{ij} \times l_{ij} \times y_{ij} \quad \forall (i, j) \in A
\]
Contents

I. DH in Brasov

II. DH area definition based on existing networks
 I. ProgRESsHEAT project
 II. Scenarios

III. DH area definition using GIS layers

IV. Comparison

V. Conclusion
Scenario parameters

- Use the inputs and outputs of the alternative scenario from ProgRESsHEAT project in the developed method.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time horizon</td>
<td>2014 - 2030</td>
</tr>
<tr>
<td>Grid depreciation time</td>
<td>25 years</td>
</tr>
<tr>
<td>DH connection rate 2014</td>
<td>16%</td>
</tr>
<tr>
<td>DH connection rate 2030</td>
<td>62%</td>
</tr>
<tr>
<td>Accumulated energy savings</td>
<td>17.50%</td>
</tr>
<tr>
<td>Interest rate</td>
<td>6%</td>
</tr>
<tr>
<td>Specific energetic distribution grid costs</td>
<td>27 €/MWh</td>
</tr>
<tr>
<td>Heat Sale price (without VAT)</td>
<td>89.5 €/MWh</td>
</tr>
</tbody>
</table>
Comparison (I)

- Investment costs in
 - GIS-based method
 - ProgRESsHEAT

- Data consistency
Comparison (II)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ProgRESsHEAT</th>
<th>GIS-Based method</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH FED (2014)</td>
<td>66.86 GWh</td>
<td>37 GWh</td>
<td></td>
</tr>
<tr>
<td>Distribution grid trench length</td>
<td>108 km</td>
<td>140 km</td>
<td>ProgRESsHEAT does not include house connections</td>
</tr>
<tr>
<td>Transmission grid trench length</td>
<td>46 km</td>
<td>16 km</td>
<td></td>
</tr>
<tr>
<td>Gird’s energetic specific cost</td>
<td>27 €/MWh</td>
<td>23.9 €/MWh</td>
<td>Simple transmission line model</td>
</tr>
</tbody>
</table>
Contents

I. DH in Brasov

II. DH area definition based on existing networks
 I. ProgRESsHEAT project
 II. Scenarios

III. DH area definition using GIS layers

IV. Result comparison

V. Conclusion
Conclusions

• In areas with existing infrastructure, considering available resources and budgets, a compromise may provide a better results compared to the optimal solution!

• For a better comparison of two methods, a consistence dataset is required.

• For the future works:
 – impact from heat losses in the grid,
 – street routes rather than Euclidean distances for the transmission lines,
 – Adapt the generic DH distribution grid cost to the case study conditions.