

Searching for new roles for district heating in a sustainable society

Danica Djurić Ilić — Linköping University, Sweden,
Louise Ödlund - Linköping University, Sweden

Aim:

Can DH contribute to a sustainable development of other energy systems?

Sustainable development?

"...development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

G. Brundland (1987)

Basic principles for sustainability:

In a sustainable society, nature is not subject to systematically increasing...

- 1)...concentrations of substances extracted from the Earth's crust,
 - 2)...concentrations of substances produced by society,
- 3)...degradation by physical means and, in that society...
 - 5-8)...people are not subject to conditions that systematically undermine their capacity to meet their needs."

The research questions:

- re INVEST 1. Can the following business strategies ensure profitable DH production and contribute to DH having an important role towards and in a future sustainable energy system?
 - introduction of biofuel production into DHSs
 - integration of DH-driven absorption cooling technology in **DHSs**
 - delivering industrial waste heat (from biofuel production industry) to DHSs
 - increasing DH use in industrial processes.

The research questions:

- re INVEST 1. Can the following business strategies ensure profitable DH production and contribute to DH having an important role towards and in a future sustainable energy system?
 - introduction of biofuel production into DHSs
 - integration of DH-driven absorption cooling technology in **DHSs**
 - delivering industrial waste heat (from biofuel production industry) to DHSs
 - increasing DH use in industrial processes.
- 2. How can heat production in DHSs contribute to reduction of global fossil fuel consumption and global GHG emissions?

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

You can not see the forest for the trees!

Sectors of interest	TS, DHS	IS, DHS	IS, DHS	IS, BS, DHS
Suggested business strategy	Biofuel by- production	Excess heat recovery from biofuel production industry	Use of DH in industrial processes	Absorption cooling production
Geographical case studied	Stockholm	-	Västra Götaland, Östergötland, Jönköping	Stockholm
Time frame applied	Long-term; (2030-2040)	Long-term; (2030-2040)	Long-term; (2030-2040)	Long-term; (2030-2040)
EMSs applied	EMS _{levels} , EMS _{WWF,} EMS _{WEO}	EMS _{WEO}	EMS _{WEO}	EMS _{WEO}
Model framework and tool applied	MODEST	Excel	MeHLA	MODEST
Viewpoint (perspective)	From DH producers	From IS	From IS	(From DH producers)
GHGs included in the study	CO ₂ +CH ₄ +N ₂ O	-	CO ₂ +CH ₄ +N ₂ O	CO2+CH4+N2O

Sectors of interest	TS, DHS	IS, DHS	IS, DHS	IS, BS, DHS
Suggested business strategy	Biofuel by- production	Excess heat recovery from biofuel production industry	Use of DH in industrial processes	Absorption cooling production
Geographical case studied	Stockholm	-	Västra Götaland, Östergötland, lönköping	Stockholm
Time frame applied	Long-term; (2030-2040)	Long-term; (2030-2040)	Long-term; (2030-2040)	Long-term; (2030-2040)
EMSs applied	EMS _{levels} , EMS _{WWF,} EMS _{WEO}	EMS _{WEO}	EIVIS _{WEO}	EMS _{WEO}
Model framework and tool applied	MODEST	Excel	MeHLA	MODEST
Viewpoint (perspective)	From DH producers	From IS	From IS	(From DH producers)
GHGs included in the study	CO ₂ +CH ₄ +N ₂ O	-	CO ₂ +CH ₄ +N ₂ O	CO2+CH4+N2O

Sectors of interest	TS, DHS	IS, DHS	IS, DHS	IS, BS, DHS
Suggested business strategy	Biofuel by- production	Excess heat recovery from biofuel production industry	Use of DH in industrial processes	Absorption cooling production
Geographical case studied	Stockholm	-	Västra Götaland, Östergötland, Jönköping	Stockholm
Time frame applied	Long-term; (2030-2040)	Long-term; (2030-2040)	Long-term; (2030-2040)	Long-term; (2030-2040)
EMSs applied	EMS _{levels} , EMS _{WWF,} EMS _{WEO}	EMS _{WEO}	EMS _{WEO}	EMS _{WEO}
Model framework and tool applied	MODEST	Excel	MeHLA	MODEST
Viewpoint (perspective)	From DH producers	From IS	From IS	(From DH producers)
GHGs included in the study	CO ₂ +CH ₄ +N ₂ O	-	CO ₂ +CH ₄ +N ₂ O	CO2+CH4+N2O

A graphical description of the system approach used for analyses of energy flows and for evaluation of the impact on global GHG emissions

production

 $3^{\rm rd}$ international conference on SMART ENERGY SYSTEMS AND $4^{\rm TH}$ GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

GHG - emissions

Sectors of interest	TS, DHS	IS, DHS	IS, DHS	IS, BS, DHS
Suggested business strategy	Biofuel by- production	Excess heat recovery from biofuel production industry	Use of DH in industrial processes	Absorption cooling production
Geographical case studied	Stockholm	-	Västra Götaland, Östergötland, Jönköping	Stockholm
Time frame applied	Long-term; (2030-2040)	Long-term; (2030-2040)	Long-term; (2030-2040)	Long-term; (2030-2040)
EMSs applied	EMS _{levels} , EMS _{WWF,} EMS _{WEO}	EMS _{WEO}	EMS _{WEO}	EMS _{WEO}
Model framework and tool applied	MODEST	Excel	MeHLA	MODEST
Viewpoint (perspective)	From DH producers	From IS	From IS	(From DH producers)
GHGs included in the study	CO ₂ +CH ₄ +N ₂ O	-	CO ₂ +CH ₄ +N ₂ O	CO2+CH4+N2O

Revenues from the sale of by-products in different scenarios considering different EM conditions.

Annual average DH production costs in different scenarios considering different EM conditions when the discount rate is 6%

DH can benefit the future sustainable development of the <u>transport sector</u>

- enables development of local biofuel supply chains (facilitate the introduction of biofuel in the local transport sectors)
- promote development of biofuel production technologies which are not yet commercial

Thank you!

Linköping University expanding reality

www.liu.se

 3^{rd} international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

www.4dh.eu www.reinvestproject.eu www,heatroadmap.eu

DH can contribute to the sustainable development of the *industrial sector*

- can make industrial sector less dependent on fossil fuels and fossil fuel-based electricity by converting industrial processes to DH.
- increase energy efficiency of the industrial sector and reduce production costs by buying excess heat from industrial processes.

DH can benefit the sustainable development of the *power sector*

DH has a possibility to *reduce fossil fuel* consumption and subsequently GHG emissions in the power sector by producing electricity in biomass- or waste-fuelled CHP plants.

Further work

- Pellets co-production
- Including small CHP plants and HP in order to increasing the share of supply-driven renewable electricity in the power sector

Combined heat and power plant

Coal condensing power plant

