Energy system flexibility and costs by means of electrofuel production for the transport sector

Andrei David
Iva Ridjan Skov
Decarbonizing the transport sector

- Small vehicles
- Rail
- Planes
- Ships
- Busses
- Lorries

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018 #SES4DH2018
Transport demand in Denmark
IDA Energy Vision 2050

- Cars and vans < 2 t
- Commercial vehicles < 6 t
- Busses
- Lorries
- Rail
- Sea
- Aviation
- Other

Total demand 32.5 TWh
75% of personal transport electrified
35% of commercial vehicles electrified
Transport fuels in IDA Energy Vision 2050

Original fuel mix based on IDA Energy Vision 2050 Reference case

New fuel mix

7.36 TWh (including 5% losses)
85% of buses
>90% of lorries
Renewable fuel pathways

1. Wind, PV etc. → Alkaline → Biogas plant → Gas cleaning → Chemical or biological synthesis → Methane

2. Wind, PV etc. → Alkaline → Biomass gasification → Gas cleaning → Chemical Synthesis → Methanol, DME, Methane, Jet fuel

3. Wind, PV etc. → Alkaline → CO₂ capture → Point → Air → Chemical Synthesis → Methanol, DME, Methane, Jet fuel

TRL 8-9, TRL 7-8, TRL 5-7, TRL 3-8
Case A. Total demand: 7.36 TWh
60% Biogas hydrogenation: 4.42 TWh
20% biomass hydrogenation: 1.47 TWh
20% CO$_2$ hydrogenation: 1.47 TWh

Biogas plant

Manure + organic waste

Electricity

SOEC/Alkaline

Methanation

Methane CNG

Heavy transport demand

Energy PLAN

Advanced energy system analysis computer model

AALBORG UNIVERSITY DENMARK

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018
#SES4DH2018
Case B. Total demand: 7.36 TWh
60% biomass hydrogenation: 4.42 TWh
20% biogas hydrogenation: 1.47 TWh
20% CO\textsubscript{2} hydrogenation: 1.47 TWh
Case C. Total demand: 7.36 TWh
60% CO$_2$ hydrogenation: 4.42 TWh
20% biogas hydrogenation: 1.47 TWh
20% biomass hydrogenation: 1.47 TWh
Scenarios to test energy system flexibility

1. **Smart Energy System** (100% buffer capacity SOEC and one week H2 storage)
2. **High Temperature synergies** (100% buffer capacity SOEC with increased efficiency. Same storage)
3. **Alkaline** (100% buffer capacity. Same storage)
4. **Reduced electrolyser** (50% buffer capacity. Same storage)
5. **Base electrolyser** (Minimum capacity with no storage)

Across all scenarios:
- similar capacities of power plants an wind
- Excess el. production: 5% of total el. demand
Electrolyser capacities

<table>
<thead>
<tr>
<th>Electrolyser capacity (MWe)</th>
<th>Reference</th>
<th>Case A: Biogas hydro</th>
<th>Case B: Biomass hydro</th>
<th>Case C: CO2 hydro</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES</td>
<td>8464</td>
<td>8132</td>
<td>8216</td>
<td>8710</td>
<td>74%</td>
</tr>
<tr>
<td>HT synergy</td>
<td>7456</td>
<td>7164</td>
<td>7238</td>
<td>7672</td>
<td>84%</td>
</tr>
<tr>
<td>Alkaline elt</td>
<td>9756</td>
<td>9374</td>
<td>9470</td>
<td>10038</td>
<td>64%</td>
</tr>
<tr>
<td>Reduced elt</td>
<td>7317</td>
<td>7031</td>
<td>7103</td>
<td>7529</td>
<td>64%</td>
</tr>
<tr>
<td>Base elt</td>
<td>4878</td>
<td>4688</td>
<td>4735</td>
<td>5020</td>
<td>64%</td>
</tr>
</tbody>
</table>
Energy system costs

Reference | A: Biogas 60% | B: Biomass 60% | C: CO2 60%

SES | HT synergy | Alkaline elt | Reduced elt | Base elt

M€

20000 | 20500 | 21000 | 21500 | 22000 | 22500

4th International Conference on Smart Energy Systems and 4th Generation District Heating 2018
#SES4DH2018
Biomass consumption

- Reference
- A: Biogas 60%
- B: Biomass 60%
- C: CO2 60%

Legend:
1: SES
2: HT synergy
3: Alkaline elt
4: Reduced elt
5: Base elt
Fuel costs €/GJ

METHANE - WEIGHTED AVERAGE COST

<table>
<thead>
<tr>
<th></th>
<th>SES</th>
<th>HT SYNERGY</th>
<th>ALKALINE ELT</th>
<th>REDUCED BUFFER</th>
<th>BASE ELT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A</td>
<td>33</td>
<td>30</td>
<td>35</td>
<td>31</td>
<td>28</td>
</tr>
<tr>
<td>Case B</td>
<td>31</td>
<td>28</td>
<td>32</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>Case C</td>
<td>37</td>
<td>34</td>
<td>41</td>
<td>36</td>
<td>40</td>
</tr>
</tbody>
</table>

€/GJ

METHANOL/DME - WEIGHTED AVERAGE COST

<table>
<thead>
<tr>
<th></th>
<th>SES</th>
<th>HT SYNERGY</th>
<th>ALKALINE ELT</th>
<th>REDUCED BUFFER</th>
<th>BASE ELT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Case B</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>Case C</td>
<td>36</td>
<td>38</td>
<td>38</td>
<td>35</td>
<td>37</td>
</tr>
</tbody>
</table>

€/GJ
Fuel costs €/GJ – sensitivity analysis

METHANE - WEIGHTED AVERAGE
30€/MW ELECTRICITY

<table>
<thead>
<tr>
<th></th>
<th>IDA</th>
<th>HT SYNERGY</th>
<th>ALKALINE ELT</th>
<th>REDUCED BUFFER</th>
<th>BASE ELT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A</td>
<td>24</td>
<td>23</td>
<td>26</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Case B</td>
<td>20</td>
<td>19</td>
<td>22</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>Case C</td>
<td>22</td>
<td>22</td>
<td>25</td>
<td>22</td>
<td>19</td>
</tr>
</tbody>
</table>

METHANE - WEIGHTED AVERAGE
120€/MW ELECTRICITY

<table>
<thead>
<tr>
<th></th>
<th>IDA</th>
<th>HT SYNERGY</th>
<th>ALKALINE ELT</th>
<th>REDUCED BUFFER</th>
<th>BASE ELT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A</td>
<td>46</td>
<td>42</td>
<td>51</td>
<td>50</td>
<td>47</td>
</tr>
<tr>
<td>Case B</td>
<td>43</td>
<td>39</td>
<td>49</td>
<td>48</td>
<td>45</td>
</tr>
<tr>
<td>Case C</td>
<td>52</td>
<td>47</td>
<td>59</td>
<td>59</td>
<td>54</td>
</tr>
</tbody>
</table>
Methane price structure
Case C – CO₂ hydrogenation

Similar trend in all scenarios!
Three main findings

• Capacity and type of electrolysers has a high impact on energy system costs, fuel costs and biomass consumption

• Electricity costs can take between 30-90% of the fuel price depending on system design and electricity cost

• Smart Energy System operation could have similar energy system and fuel cost to continuous operation
Thank you!

Andrei David
andrei@plan.aau.dk

Sustainable Energy Planning Group
Department of Planning
Aalborg University Copenhagen