LOGST

Low-temperature district heating grids

Secure the lowest Total Cost of Ownership in district heating networks

2nd international conference on Smart Energy Systems and 4GDH

Peter Jorsal

27 September 2016

The LOGSTOR Group & global presence

Agenda

- Service life cost/Total Cost of Ownership (TCO)
 - the most important design parameter
- Heat loss and service life cost at low temperature grids (55/25 °C)
 - Example distribution pipe lines and service pipe lines
 - Example distribution pipe lines
- Return of investments
- Alternative pipe materials

Focus on total cost of ownership (TCO)

- Essential for a long life time is the right choice of products and the right system design
- Essential for the lowest TCO is the balance between the investment in pipe system and installation and the heat loss of the system over life time
- Lowest heat loss is achieved on systems with axial conti pipes with a diffusion barrier and low lambda value
- The diffusion barrier will secure the low heat loss in the entire life time

Service life cost/Total cost of ownership (TCO)

Focus on total cost of ownership (TCO)

Temperature	System Parameters	Finance	CO2-emission
Winter Summer Flow 85 75 Return [°C] 55 45 Ambient [°C] 4 14 Days 215 150	Definition λ PUR calculating year Soil cover (h) mm Ambient Certificate Iambda	Currency GBP V price / kWh 0.03 Interest rate [%] 4	Fuel type Natural Gas Efficiency [%] 85 Operation 8760 Time/Year
Beair(eq.) Steel Trad ■ Pair(GBP x 1.000 DN 100 Serie 1 DN	eq.) Steel Conti 100 Serie 2	W/m D2 Diff. Lambda Win. / Sum. MWI	Cost Cost
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ROI 13,8 Year 3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Year	D2 Diff. Lambda Wiff. / Suff. Wiff. 200 0.027 38.91 / 27.12 298.4 225 0.027 31.97 / 22.28 245.1 200 Image: Comparison of the state of th	HI 108000 200000 25000 Image: Cost pipe HI 10000 210000 25000 Image: Cost pipe HI 140000 205000 25000 Image: Cost pipe HI

Low temperature grid project example

Liseborg Bakke

- Project in Viborg, 20 houses
- New build area
- Investigation of designing area for low temperature DH
- Different pipe scenarios where investigated
- 55/25°C
- Distribution pipes
 - 343 m DN20 DN50, TwinPipe
 - 7 m single pipe
- service pipes
 - 185 m 20-16 AluFlextra Double pipe
- Comparison series 2 and series 3
- Budget prices all inclusive
- Total Cost of Ownership
- Return of investment

LOGST

Budget prices – all inclusive

Liseborg Bakke;									
104-142	Pipe trench	dimension	service pipe		Inv	estment cos	t (budget)		
							service pipe	connection	
				Materials	pipe work	excavation	material	pipe work	total
	m kanal	mm	antal	kr	kr	kr	kr	kr	kr
TwinPipe/LOGSTOR	68,2	ø60,3-60,3/225	0	36.335	19.163	36.499			91.997
TwinPipe/LOGSTOR	43,1	ø48,3-48,3/180	2	38.473	18.557	23.622	1.894	3.663	86.212
TwinPipe/LOGSTOR	76,7	ø42,4-42,4/180	5	14.781	15.437	39.347	4.736	9.158	83.464
TwinPipe/LOGSTOR	25,6	ø33,7-33,7/160	2	10.148	9.273	13.133	1.894	3.663	38.114
TwinPipe/LOGSTOR	131,9	ø26,9-26,9/140	11	33.916	30.481	67.665	10.419	20.148	162.640
AluFlextra_double pipe	185	ø20-26/125		25.774	6.793	72.927			105.494
Pair of pipes/LOGSTOR	1,5	ø88,9/200		2.336	3.847	770			6.953
Pair of pipes/LOGSTOR	3,2	ø60,3/160		2.896	2.666	1.642			7.204
	535,2		20	164.659	106.217	255.605	18.943	36.634	582.058

Heat loss calculation series 2 and 3

LOGST

55/25°C

7

Pair(eq.)

8 Pair(eq.)

✓ Steel Conti ✓

✓ Steel Conti ✓

1

3

150

3 🗸 80 🗸

Те	mperature	ature System Parameters			Finance							CO2-em						
Flo Rei (°C Am (°C Da	Win Si turn 25 abient 8 j 365	iter			Definition λ PUR calculating year Soil cover (h) mm Ambient PUR, use λ certicate	Average per 30 600 soil, λ= 1.6 V	iod N/m K	> 		Currency price / kV Interest r	Wh ate [%]	О.35 4		~		Fuel type Efficiency (9 Operation Time/Year	\$	
1.	Liseborg Ba	akke	serie 2											C	alculate	Add pipe Delete	pipe Copy Project	Delete project
No	Type of syste	em	PipeSystem	Length (m) C (mm)	Series d1		d1	D1	Ser	ies d2		d2	D2	Diff.	Lambda	W/m	MWh/year
1	TwinPipe	~	Steel Conti 🗸 🗸	68		2	 	• •	225	2	~	50	~	225	at a	0.023	6.03	3.59
2	TwinPipe	~	Steel Conti 🗸 🗸	43		2	- 4	• •	180	2	~	40	~	180	1	0.023	6.19	2.33
3	TwinPipe	~	Steel Conti 🗸 🗸	76]	2	- 3	2 🗸	180	2	~	32	~	180	4	0.023	5.32	3.54
4	TwinPipe	~	Steel Conti 🔷 🗸	25]	2	· 2	5 🗸	160	2	~	25	~	160	1	0.023	4.82	1.06
5	TwinPipe	~	Steel Conti 🗸 🗸	131]	2	• 2	• •	140	2	~	20	~	140	1	0.023	4,54	5.22
6	Double Pipe	~	AluFlextra 🗸	185]	2	· 2	• •	125	2	~	26	~	125	1	0.022	4.13	6.69
7	Pair(eq.)	~	Steel Conti 🗸 🗸	1	150	3 1	· 8	o 🗸	200	3	~	80	~	200	1	0.023	10.84	0.09
8	Pair(eq.)	~	Steel Conti 🗸 🗸	3	150	з ,	· 5	• •	160	3	~	50	~	160	1	0.023	8.98	0.24
2. No	Liseborg B	akke	Serie 3 PipeSystem	Length	(m) C (mm)	Series d1	L	d1	D1	Sei	ries d2		d2	D2	Calculate	Add pipe Delete	Total MWh/year e pipe Copy Project W/m	22.76 t Delete project MWh/year
1	TwinPipe	~	Steel Conti 🗸	68]	3	~ !	50 🗸	250	3	~	50	~	250	4	0.023	5.20	3.10
2	TwinPipe	~	Steel Conti 🗸	43		3	~	40 🗸	200	3	~	40	~	200	4	0.023	5.42	2.04
3	TwinPipe	~	Steel Conti 🗸	76		3	~	32 🗸	200	3	~	32	~	200	4	0.023	4.75	3.16
4	TwinPipe	~	Steel Conti 🗸	25	-	3	~	25 🗸	180	3	~	25	~	180	1	0.023	4.30	0.94
5	TwinPipe	~	Steel Conti 💊	131	-	3	~	20 🗸	160	3	~	20	~	160	1	0.023	4.01	4.60
6	Double Pipe	~	AluFlextra 🗸	185		3	~	20 🗸	140	3	~	26	~	140	4	0.022	3.72	6.03

200 3

150 3 v 50 v 160 3 v 50 v 160 V

✓ 80

~ 200

1

0.023

0.023

	Heat loss
Serie 2	22,76 MWh/year
Serie 3	20,20 MWh/year

0.09

0.24

10.84

8.98

Service life cost over 30 years, 55/25 °C

Service Life Cost Price pipe Price Install Cost heat loss DKK x 1.000 850 800 750 700 17% 122 19% 138 650 600 550 500 450 55% 398 400 55% 398 350 300 250 200 150 28% 204 100 26% 184 50-0 Liseborg Bakke serie 2 Liseborg Bakke Serie 3 719806,68 DKK 724570,13 DKK

Service life cost over 30 years, 80/40 °C

10% saving on total cost by going for lower temperature if anything else is equal

Low temperature grid project example

LOGST

Hedeskrænten

- Project in Viborg, 12 houses
- New build area
- Investigation of designing area for low tempetaure DH
- Different pipe scenarious where investigated
- 55/25°C
- Distribution pipes (no service pipes)
 - 268 m DN20 DN40, TwinPipe
 - 2 m single pipe
- Comparison series 2 and series 3
- Budget prices all inclusive
- Total Cost of Ownership
- Return of investment

Hedeskrænten, only distribution network

LOGST

Budget prices – all inclusive

Hedeskrænten 85- 107	Pipe trench	dimension	service pipe	Investment cost (bu	udget)	
				Material cost	pipe work	excavation
	m kanal	mm	antal	kr	kr	kr
TwinPipe/LOGSTOR	70,5	ø48,3-48,3/180	0	31.909	14.036	40.447
TwinPipe/LOGSTOR	67	ø42,4-42,4/180	0	13.240	9.986	21.708
TwinPipeLOGSTOR	58,1	ø33,7-33,7/160	0	11.260	9.374	18.824
TwinPipeLOGSTOR	73,3	ø26,9-26,9/140	0	12.454	9.441	28.838
Pair of pipes/LOGSTOR	1	ø139,7ł280	0	4.672	5.219	1.187
Pair of pipes/LOGSTOR	1	ø26,9/125	0	1.531	3.034	621
	270,9			75.066	51.090	111.625

Heat loss calculation series 2 and 3

LOGST

55/25°C

Те	mperature		S	ystem Para	meters	;				Finance						CO2-em	ission			
Flo Re	Winter 55 turn 25	Summer 55 25	D	efinition λ PUR alculating year oil cover (h)	Average 30 600	perio	d ·	~		Currency price / kWł Interest rat	h te [%]	DKK 0.35 4		~		Fuel type Efficiency [9 Operation	Natural Gas 85 8760	~		
[°C An [°C Da] nbient 8] ys 365	8	A P C	nm imbient UR, use λ erticate	soil, λ= 1 No	1.6 W/	mK	~								Time/Year			Serie 2	2
			D	lataset	LOGSTO	R-3		*											Serie 3	3
1.	Hedeskrænten	serie 2												C	alculate	Add pipe Delete	pipe Copy Project	Delete project		
10 1	Type of system	PipeSystem	Length (m)	C (mm)	Series	d1	d1		D1	Series	s d2	d2	*	D2	Diff.	Lambda	W/m	MWh/year		
2	Pair(eq.)	Steel Conti	1	150	3	* *	125	~	280	3	~	125	~	280		0.023	12.51	(h) 0.11		
3	TwinPipe 🗸	Steel Conti 🗸	73		2	~	20	~	140	2	~	20	~	140	A	0.023	4.54	2.91		
4	TwinPipe 🗸	Steel Conti 🗸 🗸	58		2	~	25	~	160	2	~	25	~	160	1	0.023	4.82	2.45		heat loss(MWh/
5	TwinPipe 🗸	Steel Conti 🗸 🗸	67		2	~	32	~	180	2	~	32	~	180	s.	0.023	5.32	3.12	14 13	
6	TwinPipe 🗸	Steel Conti 🗸 🗸	70		2	~	40	~	180	2	~	40	~	180	1	0.023	6.19	3.80	13 12 12	
																	Total MWh/year	12.44	11 - 11 - 10 - 10 -	
2.	Hedeskrænten	; serie 3												C	alculate	Add pipe Delete	pipe Copy Project	Delete project	9- 9- 8-	
No	Type of system	PipeSystem	Length (m)	C (mm)	Series	d1	d1		D1	Series	s d2	d2		D2	Diff.	Lambda	W/m	MWh/year	7 · 7 · 6 ·	100
1	Pair(eq.) 🗸	Steel Conti 🗸 🗸 🗸	1	150	З	~	20	~	125	3	~	20	~	125	A.	0.023	5.84	0.05	6 · 5 · 5 ·	12
2	Pair(eq.) 🗸	Steel Conti 🗸 🗸 🗸	1	150	З	~	125	~	280	3	~	125	~	280	s.	0.023	12.51	0.11	4 - 4 - 3 -	_
3	TwinPipe 🗸	Steel Conti 🗸 🗸 🗸	73		з	~	20	~	160	3	~	20	~	160	1	0.023	4.01	2.57	3 · 2 · 2 ·	
4	TwinPipe 🗸	Steel Conti 🗸 🗸 🗸	58		З	~	25	~	180	3	~	25	~	180		0.023	4.30	2.19		
5	TwinPipe 🗸	Steel Conti 🗸 🗸 🗸	67		З	~	32	~	200	3	~	32	~	200		0.023	4.75	2.79		Hedeskrænte
6	TwinPipe 🗸	Steel Conti 🗸 🗸	70		з	~	40	~	200	3	~	40	~	200	1	0.023	5.42	3.32		

Heat lossSerie 212,44 MWh/yearSerie 311,03 MWh/year

heat loss(MWh/year)	Saving		
		11%	
100% 12		89% 11	
 Hedeskrænten serie	2	Hedeskrænten: serie 3	

Total MWh/year 11.03

Service life cost over 30 years, 80/40 °C

Service Life Cost Price Install Price pipe Cost heat loss DKK x 1.000 420 400 380 360 340 320 300 34% 122 31% 108 280 260 240 220 200 180 46% 163 160 45% 163 140 120 100 80 60 24% 83 40 21% 75 20 0 Hedeskrænten series 2 - 80/40°C Hedeskrænten; series 3 - 80/40°C 360062,32 DKK 354439,52 DKK

12% saving on total cost by going for lower temperature if anything else is equal

LOGST

Simple return of investments series 2 vs series 3

Conclusions heat loss at 55/25 °C

- The heat loss is between 17-25% of the life cycle cost
 - The design of the trench has huge influence
 - The length of the service pipes has huge influence
- There is a potential in optimizing on pipe work and excavation
 There is too much "that is how we are used to work"
- With an energy price of 350 Dkk/MWh or more series 3 is getting interesting
- Return of investment is shortest at service pipe lines where dimensions are small
- Use service pipe lines that are diffusion tight against water vapour diffusion (steel, coppar or Alupex)
 - Secures that insulation proporties is not getting worse over time
- Use diffusion barrier in the casing
 - Secure that the insulation gasses stay in the foam
 - Insulation proporties will remain the same over life time
- In the hydraulic calculation the maximum effect for house connections must be evaluated
 - Secure that sevice pipes are not over sized
 - Eco-showers or Waterfall showers

Comparison Pex vs Steel as distribution pipe line

LOGST

- PexFlextra, Twin 63 x 63 mm
 - Limited in casing pipe diameter and higher insulation series
 - More expensive than steel
 - Flexibility when there are a lot of branches????
- Steel, Twin ø60,3, series 1,2,3
 - Possible to make system with much lower heat loss than PexFlextra in coils
 - · Higher insulation series are possible
- Assumptions for the calculation
 - Actual material cost
 - Base case on installation cost is TwinPipe steel where pipe material is 30%, pipework is 25% and excavation is 45%
 - Installation of PexFlextra 5% cheaper than TwinPipe steel series 1
 - Installation of TwinPipe steel series 2 and 3 is 5% more expensive per increase of series

Pipes in coils in bigger dimensions will only be competitive when there are no branches or fittings

Service pipe lines

- Chose a media pipe with no water vapor diffusion to the PUR foam
 - Alupex
 - Steel
 - Coppar
- Chose a Pre insulated pipe with diffusion barrier in the casing
 - To secure the low heat loss during entire life time

Low-temperature district heating grids

Secure the lowest Total Cost of Ownership in district heating networks

2nd international conference on Smart Energy Systems and 4GDH

Peter Jorsal