MULTI-transfer
Simulation of bidirectional heat transfer stations in district heating grids

Dr. Markus Rabensteiner
Reininghausstraße 13A,
A-8020 Graz
Austria
+43 664 88251830
markus.rabensteiner@4wardenergy.at
Funding program
- Energieforschung 2015 – 2. call
- Funding sponsor: Climate and Energy Fund Austria
- Settlement Agent: Austrian Research Promotion Agency

Project duration
- 01.04.2016 until 31.03.2018

Contents
- Investigation of a bidirectional heat transfer station
- Innovative control strategies for the integration of renewable heat sources
- Increasing the efficiency of heating systems
Initial situation in Austria

- District heating supplier
- Location with several district heating suppliers
- District cooling network

Initial situation in Austria

- District heating: 24%
- Furnance heating: 13%
- Floor/central heating: 63%

Introduction

Plant Simulation

Results

Summary

MULTI-transfer

Challenges

- Decreasing specific heat demand in existing and new buildings \(\rightarrow \) low heat density in a region
- Decentralized integration of (low temperature) heat sources of prosumers
- More flexible structures to enable open and modular heating systems
- Ensuring an all-season heat supply (various types of consumption) through a mix of centralized and decentralized heat sources
Legal requirements

- Equal rights and fairness for all customers → Who can feed in when and how much and at what conditions?
- Site and development safety:
 - Connection and feed-in obligations on the part of the municipalities
 - Financial penalties for large potential waste heat suppliers
- Normative adaptation and simplification of domestic water supply (legionella problem)
- Change of calibration and standardization of heat meters
Use cases

- Solar thermal energy supply on the secondary side
- Waste heat integration from medium (commercial) refrigeration plants on the secondary side
- Larger heat pump applications on the primary side (return cooling)
Integration options

- Flow from the return to the forerun
 - high pump performance (small volume flows / high differential pressures)
- Return rise
 - Pressure reducing valve in return or heat exchanger pump
 - Decreasing efficiency of the primary heat source (condensation boiler)
- Forerun rise
 - Pressure reducing valve in forerun or heat exchanger pump
90% of all collectors are flat plate collectors

\[T \uparrow \Rightarrow \eta \downarrow \downarrow \]

Vacuum tube collectors are advantageous at higher temperatures. However, these are almost not be used because of the high prices.

Operation
- High-flow (return rise)
- Low-flow (forerun rise)
- Matched-flow (Flow from the return to the forerun)
Introduction

- Year-round use
- Waste heat from the freezing and standard cooling cells (e.g. supermarket)
- Max. waste heat temperature of 30 to 35°C
- Waste heat potential of a supermarket: ~250 MWh/a
Hydraulic schema

Introduction

Plant

Simulation

Results

Summary

flow

return

secondary side

primary side

heat reservoir

MULTI-transfer
Heat absorption from the grid
Flow from the return to the forerun
Return rise

Introduction
Plant
Simulation
Results
Summary
Forerun rise

Introduction

Plant

Simulation

Results

Summary
Objectives of the simulation

- While in a laboratory test, the control of a prosumer is examined, a numerical model is used to examine the effects of several prosumer on the entire grid.
Simulation of the secondary side

Introduction

Plant Simulation Results Summary

- metrological data
- consumer
- solar thermics
- energy balance
- heat reservoir
- bidirectional heat transfer station
Simulation of a single prosumer

- The forerun and return temperature of the district heating grid, at the point where the prosumer is located, is feed into the computer.
- The influence of other prosumers is not considered.
Simulation of a single prosumer

- The forerun and return temperature of the district heating grid, at the point where the prosumer is located, is feed into the computer.
- The influence of other prosumers is not considered.
Simulation of a single prosumer

Heat quantity [kWh]

Flow from the return to the forerun
Return rise

Forerun rise

grid → prosumer

prosumer → grid
MULTI-transfer

Simulation of a line of prosumers

- Simulation of a line of prosumers in a reference district heating grid
- Standardized design of a prosumer
- Arbitrary choice of locality
Simulation of a line of prosumers

- Simulation of a line of prosumers in a reference district heating grid
- Standardized design of a prosumer
- Arbitrary choice of locality
The objective of the research project MULTI-transfer is the exploration of a bidirectional heat transfer station for district heating grids.

- A simulation model depicts the secondary side.
- At present, the control can only be effected by the storage temperature.
- A model for investigation the thermo-hydraulic behaviour is planned.
- A laboratory test will be carried out in the coming weeks → Validation of the simulation model.