Domestic Heat Demand Prediction and the Implications for Designing Community Heat Network

Miaomiao (Candy) He, Michele Tunzi, David Allinson, Kevin Lomas, Mark Gillott, Lucelia Rodrigues, Nick Ebbs, John Lindup

Copenhagen, 12-13 September 2017

Trent Basin

 3^{rd} international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Trent Basin

Project SCENe

SCENe: monitoring at community

SCENe: monitoring at home

Temperatures

Relative Humidity

Carbon Dioxide

Occupancy

Electrical Energy

- Total Electricity
- Circuits
- Significant Appliances

Thermal Energy

- Hot Water
- Space Heating

Aim & Objectives

Aim: to improve the prediction of heat demand of a community for designing a communal heat network

- Objective 1: a model for space heating of a community
- Objective 2: a model for hot water of a community
- Objective 3: validation of the models

State of the art: Stochastic models

- Archetype approach
 - Limited archetypes
 - Representative of building stock

Limitations of current models

- Archetype approach
 - Limited archetypes
 - Representative of building stock
- Lumped capacitance model
 - Based on simplified hourly method
 - Pre-calibrated capacitances and coefficients

Limitations of current models

- Archetype approach
 - Limited archetypes
 - Representative of building stock
- Lumped capacitance model
 - Based on simplified hourly method
 - Pre-calibrated capacitances and coefficients
- Validation datasets
 - Annual average values / rule-of-thumb
 - A specific archetype
 - Measured datasets not for the simulated dwellings

SCENe Model: space heating

 Dynamic thermal modelling: EnergyPlus

 Stochastic heating schedules:
Richardson's model

Result: annual space heating demand

2,000 stochastic heating schedules

Result: space heating diversity factor

No. of simulation = 100

Result: hourly space heating demand

No. of dwellings = 100; No. of simulations = 100

 3^{rd} international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

SCENe model: hot water

 Volume prediction: stochastic CREST Demand Model

(McKenna et. al., 2016)

 Energy calculation: stochastic sampling measured outlet and inlet water temperatures

(Energy Saving Trust, 2008)

Result: hot water daily volume

No. of simulation = 100

Result: hot water daily volume & energy

Result: hot water hourly volume

No. of dwellings = 100; No. of simulations = 100

 3^{rd} international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Result: hot water hourly energy

No. of dwellings = 100; No. of simulations = 100

Result: hot water diversity factor

No. of simulation = 100

 3^{rd} international conference on SMART ENERGY SYSTEMS AND 4^{TH} GENERATION DISTRICT HEATING Copenhagen, 12-13 September 2017

Result: hot water minutely volume

No. of simulation = 100

No. of simulation = 1000

Validation of models

 Using data measured at community and dwelling levels – future work

Summary

Aim: to improve the prediction of heat demand for designing a community heat network

- Objective 1: a model for space heating demand
- Objective 2: a model for hot water demand
- Objective 3: validation of the models

