Domestic Heat Demand Prediction and the Implications for Designing Community Heat Network

Miaomiao (Candy) He, Michele Tunzi, David Allinson, Kevin Lomas, Mark Gillott, Lucelia Rodrigues, Nick Ebbs, John Lindup

Copenhagen, 12-13 September 2017
Trent Basin
Trent Basin

3rd international conference on
SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING
Copenhagen, 12-13 September 2017
Project SCENE
SCENe: monitoring at community
SCENe: monitoring at home

- Temperatures
- Relative Humidity
- Carbon Dioxide
- Occupancy
- Electrical Energy
 - Total Electricity
 - Circuits
 - Significant Appliances
- Thermal Energy
 - Hot Water
 - Space Heating

Cloud Server

HUB

GSM
Aim & Objectives

Aim: to improve the prediction of heat demand of a community for designing a communal heat network

- **Objective 1**: a model for space heating of a community
- **Objective 2**: a model for hot water of a community
- **Objective 3**: validation of the models
State of the art: Stochastic models

• Archetype approach
 – Limited archetypes
 – Representative of building stock
Limitations of current models

• Archetype approach
 – Limited archetypes
 – Representative of building stock

• Lumped capacitance model
 – Based on simplified hourly method
 – Pre-calibrated capacitances and coefficients
Limitations of current models

• Archetype approach
 – Limited archetypes
 – Representative of building stock

• Lumped capacitance model
 – Based on simplified hourly method
 – Pre-calibrated capacitances and coefficients

• Validation datasets
 – Annual average values / rule-of-thumb
 – A specific archetype
 – Measured datasets not for the simulated dwellings
SCENe Model: space heating

• Dynamic thermal modelling: EnergyPlus

• Stochastic heating schedules: Richardson’s model
Result: annual space heating demand

2,000 stochastic heating schedules
Result: space heating diversity factor

No. of simulation = 100
Result: hourly space heating demand

No. of dwellings = 100; No. of simulations = 100
SCENe model: hot water

• Volume prediction: stochastic CREST Demand Model

• Energy calculation: stochastic sampling measured outlet and inlet water temperatures

(McKenna et. al., 2016)

\[T_{\text{out_mean}} = 52.9 \, ^\circ\text{C} \]
\[T_{\text{in_mean}} = 15.2 \, ^\circ\text{C} \]

(Energy Saving Trust, 2008)
Result: hot water daily volume

No. of simulation = 100

$\mu = 109.5, \sigma = 7.2$

$\mu_{crest} = 117.5$

$\mu_{est} = 122$
Result: hot water daily volume & energy

\[\mu = 109.5, \sigma = 7.2 \]

\[\mu = 15.5, \sigma = 1.0 \]

\(\mu_{est} = 122 \)

\(\mu_{est} = 16.8 \)
Result: hot water hourly volume

No. of dwellings = 100; No. of simulations = 100
Result: hot water hourly energy

No. of dwellings = 100; No. of simulations = 100
Result: hot water diversity factor

No. of simulation = 100
Result: hot water minutely volume

No. of simulation = 100

No. of simulation = 1000
Validation of models

• Using data measured at community and dwelling levels – future work
Summary

Aim: to improve the prediction of heat demand for designing a community heat network

- **Objective 1:** a model for space heating demand
- **Objective 2:** a model for hot water demand
- **Objective 3:** validation of the models