3RD INTERNATIONAL CONFERENCE ON

SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

COPENHAGEN, 12-13 SEPTEMBER 2017

Balancing Demand and Supply: Linking Neighborhood-level Building Load Calculations with Detailed District Energy Network Analysis Models

Towards Planning and Integrated Design of Urban Energy Networks

Samuel Letellier-Duchesne Prof. Michaël Kummert Polytechnique Montréal

Shreshth Nagpal,
Prof. Christoph Reinhart
Massachusetts Institute of Technology

In Architecture practices,
Shift towards "data-driven" design for buildings. . .

The current design strategy

Master Planning: Architectural programming Massing Zoning Building design Civil Mechanical Energy supply schemes From plans to finished product

Solution for a better workflow: Develop tools that empower Architects & Engineers to tackle energy supply earlier & together

Integrated design process

Requirements

- Integrate the tool into a platform familiar with designers
- Quickly assess building energy demand at the city level (when no measured data is available)
- Provide a way to define a distribution network configuration
- Allow a quick transition between a typical highly iterative process (architectural programming) and a more precise and reliable design process (system design)

Software base Geometry & urban context

Urban Modeling Interface Building Archetypes,

Operational Energy,

Dynamic simulation engine

Distribution network RES & Storage models Control strategies

Typical workflow

1. Quantify the energy demand

Understanding the various energy demands of the project

Methodology

1. Quantify the energy demand

Typical Workflow Using the Tool 1. Quantify the energy demand for large scale projects

- 1. Centralize Data GIS
- Zoning
- Bldg footprint
- Construction year

2. 2.5D geometry extraction

- 3. Assign building archetypes
- 4. Energy Simulation
- UMI
- EnergyPlus
- TRNSYS

Typical workflow

2. Define the distribution network

What's the total length of the network?

Should all the buildings be connected?

Other options Mixed Integer optimization

Binary decision (0: the pipe doesn't exist, 1: the pipe exists)

COmpany

Objective function $z = \sum investment\ costs + \sum (Operation\ costs - revenues)$ (Maintenance, (Energy sold to customers) nat. gas, etc.)

J. Dorfner and T. Hamacher, "Large-Scale District Heating Network Optimization," *IEEE Trans. Smart Grid*, vol. 5, no. 4, pp. 1884–1891, Jul. 2014.

Typical workflow

3. Define the supply scheme

How is the energy generated?

Different supply schemes for different local contexts

4. Bridging the gap

From early stage design to detailed system design

Different levels of developement

Sustainability Solutions Group, "IEA DHC Annex XI: Plan4DE Final Report," International Energy Agency Energy Technology Initiative on District Heating and Cooling including Combined Heat and Power (IEA DHC), Sep. 2016.

Next steps...

Beyond the 4th generation: mitigated loop, buildings sharing excess heat at the district level (cooling and heating and the same loop)

[Adapted: UNEP, 2015]

In a nutshell. . .

- A tool promoting district energy solutions
- Integrated into a workflow familiar with designers and practitioners
- Bridging the gap between the architectural programming phase and energy planning phase at the district level

http://urbanmodellinginterface.ning.com

References

- T. Dogan et C. Reinhart, « Automated conversion of architectural massing models into thermal 'shoebox' models », dans Proceedings of BS2013: 13th Conference of International Building Performance Simulation Association, Chambéry, France, Août 26-28, 2013, p. 3745- 3752.
- J. Dorfner et T. Hamacher, « Large-Scale District Heating Network Optimization », IEEE Trans. Smart Grid, vol. 5, no 4, p. 1884- 1891, juill. 2014.
- QUEST Canada, « Building Smart Energy Communities: Implementing Integrated Community Energy Solutions », QUEST Canada, sept. 2012.
- DOE, « U.S. Department of Energy Commercial Reference Building Models of the National Building Stock », National Renewable Energy Laboratory, Golden, Colorado, TP-5500-46861, 2011.
- MIT SDL, « Modeling Boston: A workflow for the generation of complete urban building energy demand models from existing urban geospatial datasets », Sustainable Design Lab, Massachusetts Institute of Technology, 2016.
- UNEP, « District Energy in Cities: Unlocking the Potential of Energy Efficiency and Renewable Energy », United Nations Environment Programme, Paris, 2015.

Workflow Scheme

Different district heating generations

[UNEP, 2013]

