STATUS AND PERSPECTIVES OF DISTRICT HEATING SYSTEMS IN EASTERN EUROPE

Goran Krajacic, Neven Duic, Nikola Matak, Brian Vad Mathiesen, Robert Mikulandric, Gennadii Khavin, Zoran Pranjic, Tena Marusevac

3RD INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING

COPENHAGEN, 12–13 SEPTEMBER 2017
Content

- Introduction
- Status of DH in 22 Eastern European countries
- Main characteristics of DH systems in Eastern Europe
- Use of locally available fuels in DH systems
- Use of heat storage and waste
- Conclusion
Introduction

• District heating systems are currently available throughout Europe
• In EEC legacy of centralized economic planning
• Traditionally most important source of heat for space heating in highly populated urban areas
• Necessary modernisation of district heating systems
• Main problems:
 – inefficient heat production
 – declining sales
 – high heat losses
 – heat losses in production, distribution and end-use which are higher compared to Western Europe
Introduction

• Other problems:
 – high thermal and combined power plant operating and maintenance costs
 – Revenues (cost of heat for consumer) are under national tariff regulations which often give incentives to high-carbon heating methods instead of district heating
 – social problems and “energy poverty” (difficulty in paying the bills)

• future existing district heating networks in Eastern Europe could be expanded and changed gradually towards more efficient systems such as 3rd or even 4th generation district heating systems
EU and non-EU members

- Phases of entering after 1990s:
 - 1995 (Sweden, Finland, Austria)
 - 2004 (10 EEC)
 - 2007 (Romania and Bulgaria)
 - 2013 (Croatia)

Status of district heating in Eastern Europe

- District heating services are provided by utility companies via huge networks supplied by large centralized heat sources.
- They were used during past decades to distribute heat to urban population using relatively cheap fuels.
- Largest district heating systems in Russia (about 1700 TWh), Poland (just under 100 TWh) and Ukraine (just under 200 TWh).

Source: UNIZAG FSB, STATUS AND PERSPECTIVES OF DISTRICT HEATING SYSTEMS IN EASTERN EUROPE, Report, 4DH

www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu
Status of district heating in Eastern Europe

DH network length (km)

- Ukraine: 35830 km
- Serbia: 176512 km
- Slovenia: no data
- Slovakia: no data
- Russia: no data
- Romania: no data
- Poland: no data
- Montenegro: no data
- Moldova: no data
- Macedonia: no data
- Lithuania: no data
- Latvia: no data
- Kosovo: no data
- Hungary: no data
- Greece: no data
- Estonia: no data
- Czech Republic: no data
- Croatia: no data
- Bulgaria: no data
- Bosnia Herzegovina: no data
- Belarus: no data
- Albania: no data

Number of DH systems

- Ukraine: 8250
- Serbia: 50000
- Slovenia: no data
- Slovakia: no data
- Russia: no data
- Romania: no data
- Poland: no data
- Montenegro: no data
- Moldova: no data
- Macedonia: no data
- Lithuania: no data
- Latvia: no data
- Kosovo: no data
- Hungary: no data
- Greece: no data
- Estonia: no data
- Czech Republic: no data
- Croatia: no data
- Bulgaria: no data
- Bosnia Herzegovina: no data
- Belarus: no data
- Albania: no data

Source: UNIZAG FSB, STATUS AND PERSPECTIVES OF DISTRICT HEATING SYSTEMS IN EASTERN EUROPE, Report, 4DH

3rd international conference on SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING
Copenhagen, 12-13 September 2017
www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu
Status of district heating in Eastern Europe

3rd international conference on
SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING
Copenhagen, 12-13 September 2017

Source: Robert Mikulandrić, Goran Krajačić, Neven Duić, Zoran Pranjić, Gennadii Khavin, Henrik Lund, Brian Vad Mathiensen, Perspectives of district heating systems in Eastern Europe, Presentation, 2013, Portorož

Source: IEA, statistics, 2014
http://www.iea.org/statistics

Share of DH in household and commercial heating demand

Source: Robert Mikulandrić, Goran Krajačić, Neven Duić, Zoran Pranjić, Gennadii Khavin, Henrik Lund, Brian Vad Mathiensen, Perspectives of district heating systems in Eastern Europe, Presentation, 2013, Portorož

Share of DH in household and commercial heating demand

Source: IEA, statistics, 2014
http://www.iea.org/statistics
Status of district heating in Eastern Europe

Source: https://www.euroheat.org/
Status of district heating in Eastern Europe

Share of different fuels in the DH

Status of district heating in Eastern Europe

Share of natural gas in DH

Source: IEA, statistics, 2014

http://www.iea.org/statistics
Status of district heating in Eastern Europe
– Belarus example

• 70% of the population is served by district heating where the network capacity is high enough to provide thermal energy to almost all the inhabitants of cities

• Problems:
 – high share of thermal energy generated by using natural gas imported from Russia, 80%
 – no open district heating market, state monopoly for the production and distribution of thermal energy
 – The Ministry of Economics establishes the same tariffs for heating, cold and hot water for all regions, independent of the kind of equipment and fuel used for the generation of thermal energy.

• The CHP development in Belarus between 2010 and 2015 had a significant impact on the increase of electricity and thermal energy generation

• In Belarus 89.8% of the urban housing stock are covered by DH system and 38.3% of rural housing stock are covered by DH system
Main characteristics of DH systems in Eastern Europe

- inefficient heat production
- high emissions
- fossil fuel dependence
- declining sales
- old technology
- poor maintenance
- worn out equipment
- over dimensioned systems
- lack of controls
- insufficient insulation on heat pipelines

COMPARISON OF PERFORMANCE INDICATORS FOR DISTRICT HEATING DISTRIBUTION SYSTEMS

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>CEE and former Soviet Union</th>
<th>Western Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer heat consumption</td>
<td>kWh/m³</td>
<td>70-90</td>
<td>45-50</td>
</tr>
<tr>
<td>Distribution losses</td>
<td>% of heat supply</td>
<td>15-25</td>
<td>5-10</td>
</tr>
<tr>
<td>Change of circulation water</td>
<td>Refills per year</td>
<td>10-30</td>
<td>1-5</td>
</tr>
<tr>
<td>Production losses</td>
<td>% of fuel energy</td>
<td>15-40</td>
<td>5-15</td>
</tr>
</tbody>
</table>

Key challenges of DH systems in Eastern Europe

Unnecessary costs due to:
- heat losses
- inefficiency
- excess capacity

Tariffs below costs

Lack of customer focus

Uneven playing field

Increasing tariffs

Lack of control and metering equipment

Non-existent or poorly designed heat policies
Weak or lacking legal and regulatory framework

Financial problems

Poor and deteriorating service quality

Decreasing revenue

Decreasing competitiveness

Non-payment

Poor management

In Austria, more than 2,400 heat networks are existing (among them a large number of small biomass networks). DH market share is about 24%. District cooling has only a minor role limited to some cities.
Two CHP biomass plants in two EU member states:

<table>
<thead>
<tr>
<th></th>
<th>Velika Gorica (Croatia, 63,517 ppl.)</th>
<th>Jelgava (Latvia, 64 279 ppl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat capacity</td>
<td>35 MWt</td>
<td>45 MWt</td>
</tr>
<tr>
<td>Electricity capacity</td>
<td>20 MWe</td>
<td>23 MWe</td>
</tr>
<tr>
<td>Fuel consumption</td>
<td>210,000 t biomass</td>
<td>400,000 MWh biomass, 6,000 trucks</td>
</tr>
<tr>
<td>Heat production</td>
<td>125,000 MWh</td>
<td>220,000 MWh</td>
</tr>
<tr>
<td>Electricity production</td>
<td>150,000 MWh</td>
<td>110,000 MWh</td>
</tr>
<tr>
<td>Combustion</td>
<td>Circulating fluidized bed</td>
<td>Bubbling fluidized bed</td>
</tr>
<tr>
<td>Biomass type</td>
<td>Wood chips, wood residuals</td>
<td>Wood chips and agriculture residuals</td>
</tr>
<tr>
<td>Steam boiler capacity</td>
<td>55 MW</td>
<td>76 MW</td>
</tr>
<tr>
<td>Steam production</td>
<td>19.44 kg/s</td>
<td>26 kg/s</td>
</tr>
<tr>
<td>Steam temperature</td>
<td>522 °C</td>
<td>527 °C</td>
</tr>
<tr>
<td>Steam pressure</td>
<td>124 bar</td>
<td>117 bar</td>
</tr>
</tbody>
</table>

BUILT NO NIMBY

NOT BUILT NIMBY
Savings, security of supply, cleaner environment, local jobs, investments, SEAP..... are not enough?
Key challenges of DH systems in Eastern Europe

• Ukraine
 – imperfect tariff setting system
 – imperfect system of payments between consumers and suppliers in the heat energy market
 – imperfect subsidy system
 – lack of investment in thermal upgrade of buildings and DH systems

• Romania
 – transmission & distribution networks rehabilitation for increasing technical performance and delivering a cost-efficient DH-supply service, thus enhancing end-user’s acceptance
 – metering systems implementation for a reliable and transparent end-user consumption measurement
 – increasing the energy performances in public buildings thus enhancing DH supplying service efficiency
Solutions: Individual heating substation for heating and hot water supply on the basis of reliable and highly efficient plate heat exchangers, Ukraine

- **Energy saving 15-20%;**
- Payback period less than 1,5 year;
- There are more than 400 IHS and 4,000 plate heat exchangers in 18 regions of Ukraine;
- Reconstruction of systems of hot water supply with the use of energy-saving technologies and installation of IHS in 34 buildings allowed to reach energy savings equivalent to 240 000 $ per year;
- IHS are equipped with automatic devices, pumping equipment and reliable reinforcement.
Use of locally available fuels in DH systems

Heat capacity of RES in DH systems [MW]

Source: UNIZAG FSB, STATUS AND PERSPECTIVES OF DISTRICT HEATING SYSTEMS IN EASTERN EUROPE, Report, 4DH

3rd international conference on
SMART ENERGY SYSTEMS AND 4TH GENERATION DISTRICT HEATING
Copenhagen, 12-13 September 2017
www.4dh.eu www.reinvestproject.eu www.heatroadmap.eu
Renewable heating sources?

The yearly sum of global irradiation on a horizontal surface is considered only for built-up areas, then averaged for regions (NUTS level 3 for the EU).
Seasonal storage Velika Gorica, Croatia – results

Critical volume criteria
- do not reject any heat produced
- reach the maximum usage of the accumulation
Use of heat storage and waste

- MSW incineration plants are not so common in EEC
- Few examples in:
 - Czech Republic (Prague, Brno, Liberec)
 - Estonia
 - Hungary
 - Lithuania
 - Slovenia
- Heat storage is not commonly used in the district heating systems in EEC
National perspectives for DH systems in EEC

• DH systems are supported in national energy plans, strategies and recommendations
• Suggestions:
 – heat market liberalisation, new business models
 – improvement of financial stability of the district heating companies
 – reliability and efficiency improvement of the DHS
 – better DH regulation (heat metering, energy plans, demand forecasts)
 – reduction of operation and production costs
 – reduction of heat energy quantity used from the households
 – reduction of the households heating expenditures
Conclusion

• ageing of energy generation infrastructure which requires large investments in rehabilitation of existing district heating systems
• low DH efficiency and high emissions
• customer dissatisfaction with heat distribution systems which reduces total heat demand from DH systems and revenue
• DH system refurbishment will increase overall system efficiency, reduce emissions and improve quality of DH service
• in general biomass is the most available for district heating, while availability of geothermal and solar energy is limited
• substitution of fossil fuels with renewable energy sources will considerably reduce emissions and increase security of supply
• orientation to own resources is going to lead to job creation in local communities
Thank you for your attention!

Any questions?

goran.krajacic@fsb.hr