

Towards Adjoint-based Topology Optimization of Thermal Networks

Dr. Ir. Maarten Blommaert

Mechanical Engineering, KU Leuven – Energyville, Belgium

Prof. Dr. Ir. Martine Baelmans

Mechanical Engineering, KU Leuven, Belgium

Context – EFRO-SALK GeoWatt Project

"Towards a Sustainable Energy Supply in Cities"

Research topics

- ▼ Optimal design
- ▼ Thermal network control
- ▼ Flexibility
- Component design
- Geothermal energy
- ➤ Fault detection
- **→** Building models

Common case

City of Genk (B)

Design challenges in thermal network design

Good methods available for finding shortest possible routes

But finding a cost-efficient configuration, accounting for investment and operational costs, as well as design constraints non-trivial

Especially challenging for reconversion to 4th generation networks with suppliers at different temperatures

Network topology optimization with MILP/MINLP

- Recent trend: topology optimization of thermal networks
- Idea: Let an optimization algorithm decide on the most cost-effective configuration
- Typically neglects all nonlinearities
 - ★ Pressure drop of turbulent flow
 - ★ Heat losses in pipes
 - ★ Consumer model
 - ᡮ ...

➤ Or limited to rather small networks

Multicarrier network design

Need for more efficient optimization methods!

15/09/2017 confidential

"Adjoint"-based design: next step in CFD

Size and shape optimization: Topology optimization:

Airfoil design for minimal drag

32% drag reduction Gauger (2010), VKI LS on MDO

Heat sink design for maximal heat transfer

PhD. Thesis T. Van Oevelen

Adjoint: A technique for nonlinear problems with many design variables

15/09/2017

Adjoint topology optimization of heat sink

15/09/2017 6 confidential

Adjoint sensitivity calculation

 $c(\phi, q) = 0$: Transport equations

 ϕ : Control variables (e.g. material porosity)

Define Lagrangian as

$$\mathcal{L}\left(oldsymbol{\phi},oldsymbol{q},oldsymbol{q}^{*}
ight)=I\left(oldsymbol{\phi},oldsymbol{q}
ight)+\left(oldsymbol{q}^{*},c\left(oldsymbol{\phi},oldsymbol{q}
ight)}{oldsymbol{q}^{*}: ext{Lagrangian multipliers}}$$

The sensitivity then equals

$$\frac{dI}{d\boldsymbol{\phi}}\delta\boldsymbol{\phi} = \frac{d\mathcal{L}}{d\boldsymbol{\phi}}\delta\boldsymbol{\phi} = \frac{\partial\mathcal{L}}{\partial\boldsymbol{\phi}}\delta\boldsymbol{\phi} + \frac{\partial\mathcal{L}}{\partial\boldsymbol{q}}\delta\boldsymbol{q} + \frac{\partial\mathcal{L}}{\partial\boldsymbol{q^*}}\delta\boldsymbol{q^*}$$

Adjoint sensitivity calculation

Adjoint-based network optimization

Check scaling of MINLP and adjoint for turbulent flow network

Optimized **networks of increasing size** for minimal compressor power

Comparison of MINLP (GAMS/COUENNE) and adjoint topology optimization for hydraulic problem

Master thesis B. Van Dijck

15/09/2017 9 confidential

What's the catch?

- ➤ Analyze topology optimization of 3-point laminar hydraulic flow network Solve momentum in vertices and continuity in nodes (Evgrafov)
 - \uparrow Objective: $\min_{x_i} J = \sum_i \Delta p_i q_i$, subject to $\sum_i x_i < V$
 - $*x_i = \text{pipe volume}, \Delta p_i = \text{pressure drop},$ $q_i = \text{flow}, V = \text{maximal pipe volume}$

What's the catch?(2)

▼Two local optima!

Local optimum

Global optimum

➤ Due to high flow resistivity of small pipes

$$\dagger J = \sum_{i} \Delta p_i q_i = \sum_{i} R_i q_i^2 = R_{123} q_{in}$$

$$*R_i = \frac{8\pi\mu l_i^3}{x_i^2}$$
, $R_{123} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2 + R_3}}$

↑ Multiple zeros in denominator

How to deal with local optima (1)

■ Manipulate choice of design variables

† Optimize existence
$$\phi_i = \frac{x_i^2}{x_{i,nom}^2}$$
, with constraint $\sum_i \phi_i x_{i,nom} < V$

Global optimum achieved from any design point!

Now for thermal networks...

▼Thermal network model

- + Haaland correlation for turbulent flow friction in pipes
- ★ Consumer model with throttle and heat exchanger (for now fixed T-drop)

▼Worst-case optimal design

♣ Objective: Compromise between compressor power and consumer heat demand

★ Control topology, pipe diameters, throttles, and plant inflow

Topology optimization of thermal networks: preliminary results

Some tests with fixed choice of β and $Q_{d,1} = Q_{d,2}$

More than 3 points works as well of course...

Conclusions

Adjoint methods yield much better scalability to larger networks

Adjoint methods are compatible with strongly nonlinear design problems

First tests with adjoint-based tool on thermal networks positive

Ongoing/future work

- Extension to energy equation and suppliers at different temperatures
- Heat exchanger model at consumer side
- Add projection/continuation methods for discrete design variables
- **Economic cost function with investment costs**
- **▼**Long term: Combined network/storage optimization,...

Questions?

15/09/2017 18 confidential

Extra slides

28/08/2017 M. Blommaert 1

How to deal with local optima (2)

Numerical continuation strategy

- * Make homotopy map = continuous transformation of objective and constraints
- ★ Let convex proxy problem serve as good initial guess

Design challenges in energy applications

Compact Cooling

- Data centers
- Power electronics
- Photovoltaics

Compact Heat Exchangers

- HVAC Systems
 balanced air ↔ air
 recuperator
- Micro Gas
 Turbine
 Recuperators
- Fuel Cells

High-capacity storage

- Thermal storage in PCM's
 - charge time vs. capacity
- Batteries/fuel cells
 - -graded electrodes
 -packing design

Thermal systems optimization

- Thermal networks routing
- Reconversion to 4G networks
- Multicarreer network design

Design challenges in energy applications

Compact Cooling

- Data centers
- Power electronics
- Photovoltaics

Compact Heat Exchangers

- HVAC Systems
 balanced air ↔ air
 recuperator
- Micro Gas
 Turbine
 Recuperators
- Fuel Cells

High-capacity storage

- Thermal storage in PCM's
 - charge time vs. capacity
- Batteries/fuel cells
 - -graded electrodes
 -packing design

Thermal systems optimization

- Thermal networks routing
- Reconversion to 4G networks
- Multicarreer network design

Applications of optimization methodologies

Divertor Shape optimization

Magnetic field optimization

Review paper and references therein: M. Baelmans et al. *Nucl. Fus. 57 (2016)*, no. 036022.

3D Topology optimization Heat sinks cooled by natural convection

Optimized designs for varying Gr-number at a mesh resolution of 160x320x160. (Gr = 10^3 , 10^4 , 10^5 , 10^6)

Alexandersen, 2016

optimization cost

- DNS steady laminar flow
- 8,19 M grid cells

10 hours on 1280 cores

Simulation-based design

High simulation cost

- DNS steady laminar flow
- 1,44 M grid cells/fin
- 9 hours on 100 processors

Broad design explorations quickly become inaccessible!

High optimization cost

- Thermal network design
- Many design variables
- Bad scalability of traditional methods

Real-size problems inaccessible with traditional methods!

Topology optimization for cooling

Electronics cooling

Silicon micro heat sink: 1cm x 1cm x 500µm

Fixed pressure drop: 10 kPa

Heat source 40 K above coolant inlet T

Heat sink for **constant temperature** heat source

Objective:

Maximal heat removal from the heat source

Heat sink for **constant heat flux** source:

Objective:

Minimal deviation from desired temperature

Easily extended to given heat flux profile and desired temperature

26

Heat sink $\frac{1}{W}$ inlet $\frac{1}{T = T_i}$ heat source $\frac{1}{T = T_s}$ topology optimization

outlet

cover plate

Constant T

- Total heat removed: 794 W (≈8MW/m²)
- 30x better than empty cooler

28/08/2017 M. Blommaert 27