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Context — EFRO-SALK GeoWatt Project
“Towards a Sustainable Energy Supply in Cities”

Research topics

= Optimal design

~ Thermal network control
= Flexibility

~ Component design

%

%

%

Common case
= City of Genk (B)

[llustration by Annelies Vandermeulen
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Design challenges in thermal network design

~ Good methods available for finding shortest
possible routes

~u But finding a cost-efficient configuration,
accounting for investment and operational
costs, as well as design constraints non-trivial

~ Especially challenging for reconversion to 4t
generation networks with suppliers at
different temperatures
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Network topology optimization with MILP/MINLP

~u Recent trend: topology optimization
of thermal networks

Multicarrier network design
~u |dea: Let an optimization algorithm
decide on the most cost-effective
configuration

~u Typically neglects all nonlinearities
‘+ Pressure drop of turbulent flow

* Heat losses in pipes \ N//J
# Consumer model &

o~

e

_ Mo ot
~a Or limited to rather small networks W. Mazairac et al. (2015)

Need for more efficient optimization methods!
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“Adjoint”-based design: next step in CFD

Size and shape optimization:

Airfoil design for minimal drag

Shocks

aer
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'32% drag reduction
Gauger (2010), VKI LS on MDO

Topology optimization:

Heat sink design for maximal heat
transfer

outlet
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PhD. Thesis T. Van Oevelen

Adjoint: A technique for nonlinear problems with many design variables
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Adjoint topology optimization of heat sink

Build a grid Compute Compute
fulfilling pressure and temperature
constraints velocity field field
""" - Solve
o ) energy
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A way to compute all sensitivities at once!

Outcome

Thermal
resistance
or

hotspot
temperature

Desired

change
Lower
Thermal
resistance
or hotspot
temperature




Adjoint sensitivity calculation

c(¢,q) = 0: Transport equations

q: state variables (e.g. pressure, temperature,...)
¢: Control variables (e.g. material porosity)

Define Lagrangian as

L(p,q,q%)=1(¢,q)+ (q",c(d,q))
\q* : Lagrangian multipliers

The sensitivity then equals

6[1 oL
6 = 6 = 6
b= 1509 = 5500+ 5o0a+ 5

#*

¢

d¢ aqs




Adjoint sensitivity calculation

' Lagrangian

oL

oq* — C(¢ » d ) =0 Si - B q = [p, v, T]"
oL
Adjoint si q* - [P *p* T ]T

5@3 q,q *)—I(¢,q)+ GET «

Difficult nonlines
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Adjoint-based network optimization

Check scaling of MINLP and adjoint for turbulent flow network

10%
] Outflow i MINLP 2
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Optimized networks of increasing size for 0’ 102
minimal compressor power # Network nodes

Comparison of MINLP (GAMS/COUENNE)
and adjoint topology optimization for
hydraulic problem

Master thesis B. Van Dijck

15/09/2017




What’s the catch?

~w Analyze topology optimization of 3-point laminar hydraulic
flow network Solve momentum in vertices and continuity in
nodes (Evgrafov)

* Objective: minJ = »; Ap;q;,subjectto X;x; <V
Xi

+ x; = pipe volume, Ap; = pressure drop,
q; = flow, V' = maximal pipe volume

C

Inflow Outflow
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What’s the catch?(2)

~w Two local optimal

J[W]
C ] C
10

Inflow Outflow , Inflow Outflow
—) 0 . ) I

A B 0 0.5 1 A B

X1
Local optimum Global optimum

~w Due to high flow resistivity of small pipes
] =2 Apiq; = ZiRiql'z = R1234in

8mul} 1
%Ri— 2 »R123— 1, 1
l R4 lRz+Rg

+ Multiple zeros in denominator
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How to deal with local optima (1)

~ Manipulate choice of design variables

2
+ Optimize existence ¢; = le , with constraint }}; @;X; nom <V

xi,nom

C
Inflow Outflow
—) —)
A B
%0 05 1 Global optimum

P1

Global optimum achieved from any design point!
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Now for thermal networks...

~w Thermal network model

+ Haaland correlation for turbulent
flow friction in pipes

# Consumer model with throttle and heat
exchanger (for now fixed T-drop)

~a \Worst-case optimal design

# Objective: Compromise between
compressor power and consumer <
heat demand Outflow

1=l |30 = Qup) | 7

AP(l _ ,B)Apinqin
# Control topology, pipe diameters, throttles, and plant inflow
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Topology optimization of thermal networks:
preliminary results

Some tests with fixed choice of f and Q4,1 = Q47

8%ptimized network for 3 =0.95

8(())ptimized network for 5 =0.95

8(())ptimized network for 5 =0.95
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More than 3 points works as well of course...

10Cc))ptimized network for 3 =0.95 100 Flow in optimized network
50 ¢
0
-50
-100 -100

0 50 100 150 200 0 50 100 150 200

15/09/2017



Conclusions

~“w Adjoint methods yield much better scalability to larger
networks

~ Adjoint methods are compatible with strongly nonlinear
design problems

~u First tests with adjoint-based tool on thermal networks
positive
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Ongoing/future work

~u Extension to energy equation and suppliers at different
temperatures

~w Heat exchanger model at consumer side

~ Add projection/continuation methods for discrete design
variables

~m Economic cost function with investment costs

~ Long term: Combined network/storage optimization,...
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Questions?
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Extra slides

KU LEUVEN
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How to deal with local optima (2)

~w Numerical continuation strategy

+ Make homotopy map = continuous transformation of objective
and constraints

# Let convex proxy problem serve as good initial guess

Q
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Design challenges in energy applications

; Cooli Compact Heat
LA SO Exchangers
s==lnilaattifels s VAL Systems
balanced air < air
recuperator
Ssvloveel .
: e Micro Gas
electronics .
Turbine
Recuperators

* Photovoltaics ¢ TBuelColls

High-capacity
storage

Thermal

storage in

PCM'’s

charge time vs.
capacity

Batteries/fuel

cells
-graded electrodes
-packing design

Thermal systems
optimization

e Thermal
networks
routing

e Reconversion to
4G networks

e Multicarreer
network design

15/09/2017
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Design challenges in energy applications

Compact Heat High-capacity Thermal systems

Compact Coolin . . ..
p 8 Exchangers storage optimization

s Dilece e « HVAC Systems = K Thermal \

g e storage in networks
recuperator PCM’s routing
e Power | charge time vs.
electronics Mlcrg o capacity  Reconversion to

Turbine s Batteries fucl G e
Recuperators cells

« Photovoltaics ‘graded glectrodes e Multicarreer

e Fuel Cells -packing design _
\ network design
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Applications of optimization methodologies

)

Divertor Shape
optimization

Magnetic field
optimization

Contours of Heat source

Review paper and references therein: M. Baelmans

LD . e g & et al. Nucl. Fus. 57 (2016), no. 036022.
ARy m VTN

0.002 0.004 0.006 0.008 0.01
x (m)
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3D Topology optimization
Heat sinks cooled by natural convection

Optimized designs for varying Gr-number at a mesh resolution of 160x320x160. (Gr = 10”3, 10/4,
1075, 1076)

optimization cost

* DNS steady laminar flow
» 3L EBEorilcells

10 hours on 1280 cores

Alexandersen, 2016
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Simulation-based design

High optimization cost

D ST S G * Thermal network design

* DNS steady laminar flow * Many design variables

* 1,44 M grid cells/fin * Bad scalability of
"""" traditional methods

7N MINLP - 3

wn : : -

Q 10 \/9/ xfﬁf“ﬂxw
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v .~ -~ " Adjoint-based

O 1w't S o Co

o " s

% 10°F ~ : “

; A

Courtesy: G. Buckinx, KU Leuven o o
# Network nodes
Master thesis B. Van Dijck

Broad design explorations Real-size problems inaccessible
quickly become inaccessible! with traditional methods!
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Topology optimization for cooling

Fixed pressure drop: 10 kPa
Heat source 40 K above coolant inlet T

T_T T="T,
Heat sink for constant Heat sink for constant heat flux
temperature heat source source:
Objective: Objective:
Maximal heat removal from the Minimal deviation from desired
heat source temperature

Easily extended to given heat flux profile
and desired temperature

KU LEUVEN
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Contours of T
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e Start with grey; evolve to b/w |
* Total heat removed: 794 W (=8MW/m?2) 0oz 0o sus oone o

30x better than empty cooler
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