THE SMART ELECTRICITY STORAGE
DISTRICT HEATING AND
COOLING WITH THERMAL
STORAGES
OUR VISION

Creating liveable cities – smart solutions for the citizens
STRUCTURE OF THE PRESENTATION

• Today’s energy system
• The future smart energy system
• Virtual battery
• Case study: Gram Fjernvarme
• Case study: Favrholm
• Final remarks
TODAYS ENERGY SYSTEM

- Starting point in DK1 (Western part of Denmark)
PRODUCTION DISTRIBUTION (2010 – 2016)
ELECTRICITY PRICE 2016

Day – ahead market electricity price daily average 2016 (DK1)
MARKET VALUE OF ELECTRICITY
ELECTRICITY PRICE AND WIND PENETRATION

Day – Ahead Price vs. Wind Penetration (DK1)
THE FUTURE SMART ENERGY SYSTEM

• Based on the Smart Energy Barrier and Solution Catalogue
STRUCTURE OF SMART ENERGY SYSTEMS

- *Smart Energy Barrier and Solution Catalogue* outlines the benefits and roadmap towards a renewable energy system
 - Integration between sectors
 - Sectoral suboptimal planning must be avoided
 - 4th generation district heating
 - Thermal storages
"Thermal storages with electricity producing/consuming units can provide the same flexibility as electric batteries, but at a much lower cost"
CASE STUDIES

- Gram Fjernvarme
- Favrholm
GRAM FJERNVARME

- Multiple production units
- Thermal storage
HEAT PRODUCTION COST

![Graph showing heat production cost vs. electricity price for different technologies: Gas Engine, Heat Pump, Gas Boiler, Electric Boiler.](image)
DISTRICT HEATING PRODUCTION DISTRIBUTION

- Demand
- Heat Pump
- Gas Engine
- Gas Boiler
- Electric Boiler
- Solar
- Storage Content

Heat Production (MWh)
NET ELECTRICITY PRODUCTION

- Net Electricity Production
- Electricity Price

Time (h)

Electricity Price (€/MWh)

Net Electricity Production (kWh/h)
FAVRHOLM (HILLERØD)

- Development area
- DH&C a profitable option
 - 660,000 m² heated floor area
 - 13 MW peak
 - 470,000 m² cooled floor area
 - 9 MW peak

<table>
<thead>
<tr>
<th>Projektscenarie</th>
<th>Lokalsamfund</th>
<th>Samfund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjernvarme ved 100 % tilslutning</td>
<td>159 mio.kr.</td>
<td>124 mio.kr.</td>
</tr>
<tr>
<td>Fjernkøling med 80 % tilslutning</td>
<td>65 mio.kr.</td>
<td>55 mio.kr.</td>
</tr>
<tr>
<td>I alt</td>
<td>224 mio.kr.</td>
<td>179 mio.kr.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lav tilslutning</th>
<th>Lokalsamfund</th>
<th>Samfund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fjernvarme ved 70 % tilslutning</td>
<td>107 mio.kr.</td>
<td>73 mio.kr.</td>
</tr>
<tr>
<td>Fjernkøling ved 60 % tilslutning</td>
<td>31 mio.kr.</td>
<td>18 mio.kr.</td>
</tr>
<tr>
<td>I alt</td>
<td>138 mio.kr.</td>
<td>91 mio.kr.</td>
</tr>
</tbody>
</table>

![Graph showing heat production cost vs. electricity price](image-url)
THE DH&C SYSTEM

DH&C SYSTEM:

- ATES
- Heat Pumps
- Thermal Storage
FINAL REMARKS

• The virtual battery is available for free

• DH&C systems provides great flexibility to the electricity system (demand response)

• Variable electricity prices (and tariffs) favours flexible operation

• District cooling holds great future potential for development

“Common solutions provides cheaper energy to the local community, and additional benefits to all of society”
THANKS FOR YOUR ATTENTION!

SØREN MØLLER THOMSEN
SMT@RAMBOLL.COM

VISIT US AT:
HTTP://WWW.RAMBOLL.COM/ENERGY