Performance analysis of heat pumps utilizing different low temperature heat sources to supply district heating

3rd international Conference on Smart Energy Systems and 4th Generation District Heating
12.-13. September 2017, Copenhagen

Henrik Pieper, henpie@mek.dtu.dk
Torben Ommen
Wiebke Brix Markussen
Brian Elmegaard
Agenda

I. Introduction
 – Motivation
II. Method
 – Model development
 – Key parameters
 – Case description
III. Results
 – Comparison of scenarios
IV. Discussion
 – Model limitations
V. Conclusion

Source: http://www.heatpumpcritique.com/
I. Introduction

- Energy planning:
 - Constant COP of heat pumps (HP)
- Different heat sources:
 - Seawater, lakes, rivers
 - Air, solar energy
 - Groundwater, geothermal energy
 - Sewage water, waste heat
- Varying temperatures:
 - Influence COP

- How to get highest COP?
 - Investigating hourly variations in COP
 - Comparing scenarios with single heat sources and a combination of those
II. Model

- GAMS
- Linear programming
- Lorenz cycle for COP:
 \[
 \text{COP}_{\text{HP},t,j} = \eta_L \text{COP}_{\text{HP},L,t,j} = \eta_L \frac{\bar{T}_{\text{Im},h,t,j}}{\bar{T}_{\text{Im},c,t,j}}
 \]
 \[
 \eta_L : \text{Lorenz efficiency}
 \]
- Comparison of 3 heat sources in 4 scenarios

Seawater, groundwater or air

Optimal HP capacities found by GAMS

Seawater
Groundwater
Air
II. Key parameters

• Annual mean COP:

\[
\text{COP}_{\text{avg}} = \frac{1}{n} \sum_{t=1}^{n=8760} \text{COP}_{\text{HP},t}
\]

• Weighted annual system COP:

\[
\text{COP}_{\text{sys}} = \frac{\dot{Q}_{\text{sink,sys,tot}}}{P_{\text{sink,sys,tot}}}
\]

• Full load hours [h]:

\[
\text{FLH}_j = \sum_{t=1}^{n=8760} \frac{\dot{Q}_{\text{sink},t,j}}{\dot{Q}_{\text{sink,d},j}}
\]
II. Case description: Nordhavn

- Large development district in Europe
- www.energylabnordhavn.dk

- For this study:
 - Inner Nordhavn: 670,000 m²
 - New residential buildings
 - Space heating: 18 kWh/m²/yr
 - Domestic hot water: 16 kWh/m²/yr
 - Peak demand: 12.4 MWh/h

- 2 cases:
 - No base load (& Base load)
 - Total capacity: 80% of peak demand
 - 15 MWh storage
 - Peak boiler when needed
III. COP and heat demand
III. Key parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Seawater</th>
<th>Groundwater</th>
<th>Air</th>
<th>Heat source mix: Sea/GW/Air</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>no base load case</td>
<td>Shares: 9%/56%/15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average COP(_{avg})</td>
<td>(-)</td>
<td>3.54</td>
<td>></td>
<td>3.46</td>
<td>-10%</td>
</tr>
<tr>
<td>Weighted COP(_{Sys})</td>
<td>(-)</td>
<td>2.90</td>
<td><</td>
<td>3.12</td>
<td>-18%</td>
</tr>
<tr>
<td>Full load hours HP</td>
<td>(h)</td>
<td>2576</td>
<td>2704</td>
<td>2710</td>
<td>3214/2893/1736</td>
</tr>
</tbody>
</table>

- 1 MW/7 MW/2 MW

- COP:+3%
- 7 MW peak boiler capacity

7 MW peak boiler capacity
III. Winter: no base load case

(a) Heat source mix

(b) Groundwater

(c) Seawater

(d) Air

Heat demand and supply (MW/h), COP $\text{HP,}_{I,I}$
III. Summer: *no base load case*
III. Variation of heat source capacity shares

no base load case

![Graph showing COPsys vs Share of groundwater (%) for different heat source shares.](image)

- Sea
- GW
- Air
- 0% Air
- 5% Air
- 10% Air
- 15% Air
- 20% Air
- Optimum

- 45% < GW > 65%
- 0% < Air > 20%
- 0% < Sea > 20%
IV. Discussion

Model limitations:

- No auxiliary electricity consumption
- No investment costs
- Constant Lorenz efficiency
- No minimum HP operation level
- Constant electricity price
- Limited to groundwater, seawater and air
- No cooling demand
V. Conclusion

• COP of seawater and air varies a lot
 – Fixed annual COP not recommended without heat demand
 – Weighted COP identified true performance & ranking of heat sources

• High peak unit capacity required for seawater HP

• HPs with combination of heat sources
 – perform better than HP with single heat source
 – utilize heat sources and capacity more effectively

• Recommended range of HP capacities based on peak demand
Performance analysis of heat pumps utilizing different low temperature heat sources to supply district heating

3rd international Conference on Smart Energy Systems and 4th Generation District Heating
12.-13. September 2017, Copenhagen

Henrik Pieper, henpie@mek.dtu.dk
Torben Ommen
Wiebke Brix Markussen
Brian Elmegaard
II. DHW + SH demand profile
III. Available heat source capacities

![Graph showing available heat source capacities](image)
III. Winter: *base load case*

(a) Heat source mix

(b) Groundwater

(c) Seawater

(d) Air
III. Summer: base load case
III. Variation of heat source capacity shares

base load case

![Graph showing variation of heat source capacity shares](image)

GW > 35%
III. Key parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Seawater</th>
<th>Groundwater</th>
<th>Air</th>
<th>All heat sources: Sea/GW/Air</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>base load case</td>
</tr>
<tr>
<td>Average COP<sub>avg</sub></td>
<td>(-)</td>
<td>3.54</td>
<td>3.40</td>
<td>3.46</td>
<td>3.43</td>
</tr>
<tr>
<td>Weighted COP<sub>HP,w</sub></td>
<td>(-)</td>
<td>3.10</td>
<td>3.40</td>
<td>2.90</td>
<td>3.40</td>
</tr>
<tr>
<td>Weighted COP<sub>Sys</sub></td>
<td>(-)</td>
<td>5.28</td>
<td>6.02</td>
<td>5.38</td>
<td>6.03</td>
</tr>
<tr>
<td>Full load hours HP</td>
<td>(h)</td>
<td>1358</td>
<td>1414</td>
<td>1417</td>
<td>446/1668/0</td>
</tr>
</tbody>
</table>

					no base load case
Average COP_{avg}	(-)	3.54	3.40	3.46	3.43
Weighted COP_{HP,w}	(-)	3.27	3.40	3.12	3.50
Weighted COP_{Sys}	(-)	2.90	3.40	3.12	3.50
Full load hours HP	(h)	2576	2704	2710	3214/2893/1736

- **COP:** +3%
- **FLH for no base case:** 90% higher
- **7 MW peak boiler capacity:** -18%