ITERATIVE SIMULATION AND OPTIMIZATION APPROACH FOR ENERGY PERFORMANCE EVALUATION OF GROUND SOURCE HEAT PUMP SYSTEMS

BOURGAREL Sarah
PRASANNA Ashreeta, ROGENHOFER Lennart, Prof. MARECHAL François, DORER Viktor

Copenhagen, 13th of September 2017

EPFL Empa
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Materials Science and Technology
Aim: Modelling approaches

<table>
<thead>
<tr>
<th>SIMULATION</th>
<th>OPTIMIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Accurate representation of systems real behaviour</td>
<td>+ High quality of the solutions</td>
</tr>
<tr>
<td>+ Implementation flexibility</td>
<td>+ Implementation simplicity</td>
</tr>
<tr>
<td>+ Well adapted for sensitivity analysis</td>
<td></td>
</tr>
<tr>
<td>- Difficult to achieve high quality solutions (operation strategy, design)</td>
<td>- Limitation of the implementation due to linear formulation constraints => risk of oversimplification</td>
</tr>
<tr>
<td>- Time intensive modelling process</td>
<td>- Difficulty to interpret the results</td>
</tr>
<tr>
<td>- Requires deep understanding of the systems’ behaviour</td>
<td>- Perfect foresight assumption</td>
</tr>
<tr>
<td></td>
<td>- Limitation of the formulation of the objective function</td>
</tr>
</tbody>
</table>

REAL ENERGY SYSTEMS

MONITORING

ITERATION 1
SIMULATION
Implemented in Matlab
Systems' operational behaviour
Defined operation strategy
Outputs:
• Long term operation evaluation
• Sensitivity: borehole regeneration rates

ITERATION 2
OPTIMIZATION
Implemented in AIMMS
Systems' operational behaviour and limits
Objective function
Output:
• Optimized systems' operation strategies

ITERATION 3
SIMULATION
Implemented in Matlab
Systems' operational behaviour
Best case systems' operation
Outputs:
• Long term evaluation of optimized operation

Introduction It. 1: Simulation It. 2: Optimization It. 3: Simulation Discussion Conclusions
Iteration 1, simulation: Modelling

Systems’ components:
- **Ground** surrounding the borehole
- **Borehole heat exchanger system**
- **Heat pump (HP)**
- **Storage tanks**: space heating (SH) and domestic hot water (DHW)
- **Pumps**
- **Photovoltaics panels (PV) / Hybrid panels (PV/T)**

Simulation of the 1st year of operation
+ 30 years of operation
Outputs:
- Parameters calibration:
 - Storage tanks sizes
 - Storage tank standing losses
 - Heat pump production capacity
- Values of the coefficient of performance of the heat pump and PV efficiency
New optimization models:
- Implemented as MILP problem in AIMMS
- Representing the systems operational behaviour and limits
- Based on simulations’ results.

⇒ Define the HP and storage tanks operation that optimize the objective function.

The objective function is defined as the operational carbon emissions minimization:

$$Carbon_{total} = \sum_{t} (E_{HP}^{grid}(t, i) \cdot CF_{grid} - E_{PVT}^{grid}(t, i) \cdot CF_{PV,prod})$$

Carbon factors for CH-mix and PV produced from KBOB Liste Ökobilanzdaten in Baubereich 2009-1-2016
Iteration 2, optimization: Parameters integration

Linear constraints formulation ⇒ **COPs** of HP and **PV efficiency** are not dynamically calculated

⇒ COPs of HP and PV efficiency are extracted from simulation results
⇒ Different levels of precision in the definition of the parameters integrated in the models:

Level 1: Constant parameters over the year
Level 2: Hourly defined parameters
Iteration 2, optimization: Electricity balance

⇒ Significant increase of the PV produced electricity self-consumption

Load cover factor: (26%) 51% (PV self used el. / tot el. consumption)
Supply cover factor: (23%) 49% (PV self used el. / tot PV produced el.)
⇒ **SH storage tank** is more used (40% of the heat production for SH purposes)
Higher share of the SH heat production for **storage tank supply in the hot season**

Iteration 2, optimization: Heat pump operation

Simulation 1

Optimization 2
Outputs:
- Heat pump operation strategy that minimize the carbon emissions of the energy system operation
Comparing *optimization results* (iteration 2) and *simulated optimized HP operation* (iteration 3)

- **PV efficiency:**
 - Constant PV efficiency (level 1): Hourly defined efficiency (level 2): negligible difference (0.0245 %)

- **COP:**

![Comparison of PV production with level 1 and level 2 η_{PV}](image)
Iteration 3, simulation: Comparison optimization it.2 and simulation it. 3

Electricity balance:
- **Electricity bought from the grid:**
 Underestimation in the optimization result for summer
- **Electricity sold to the grid:**
 Underestimation in the optimization result in the coldest months

⇒ In absolute values: low difference.

⇒ From short time variations of the COP
Iteration 3, simulation: comparison of simulation it.1 and it.3

Ground temperature:
- slightly higher temperature decrease
 ⇒ more heat produced

COP:
- COP it. 3 slightly lower than it.1

Electricity consumption:
- It.3: Higher electricity consumption
Discussion: Iterative process

Contributions:
- More **accurate** parameters integrated
- Information on systems’ operational behaviour and limits

Limitations:
- COPs as daily mean; shorter variation needs to be dynamically defined

Contributions:
- HP production **profile** that minimize the greenhouse gas emissions of the operation

Limitations:
- Difference in the results of optimization and simulation
- Different models, HP operation profile **not completely compatible** (storage tank temperatures)
On the iterative modelling approach:

+ Iterative approach **combines benefits** from both modelling methods:

 Simulation model provides an accurate virtual representation of the energy systems; well adapted for sensitivity analysis

 Optimization model provides a high quality operation strategy

- Increasing level of precision of the parameters improves the accuracy of the results
- Time intensive approach due to the implementation in different software

Future work: Limitations in the interactions that need to be investigated

Thank you for the attention!