Low-temperature district heating grids
A study of the feasibility of low-temperature district heating solutions for Aarup, comparing booster heat pumps and electrical cartridges for preparing domestic hot water

Christian Sjøstrann Jørgensen
Agenda

• Introduction and Framework conditions
• Scenarios
• Methods
• Results
• Conclusions
• Questions
Introduction and framework conditions

• Background:
 – Long-term climate goals
 – Interest in expanding district heating areas

• Investigating two things
 – Is low-temperature (40 °C) district heating a feasible alternative to individual, or 60 °C district heating in Aarup
 – What kind of booster unit should provide domestic hot water in a low temperature scenario
Introduction and framework conditions

Heat demand: 30,800 MWh
90/10 split between space heating and hot water
Scenarios

• References
 – Existing system with primarily natural gas boilers
 – Alternative with individual heat pumps

• District heating
 – 60 °C forward and 37 °C return
 – 40 °C forward and 20 °C return
 • Booster heat pump
 • Electrical cartridge
Methods

• District heating network in Termis
 – Heat loss estimate
 • 60 °C forward 37 °C return: 17 % heat loss
 • 40 °C forward 20 °C return: 9 % heat loss
 – District heating grid investment costs

• Energy system analyses in EnergyPro
 – Operation and maintenance costs
 – Damage costs

• Private- and socioeconomic analyses
Results

• Socioeconomic
 – Natural gas individual heating: 585 DKK/MWh-heat
 – Individual heat pumps: 573 DKK/MWh-heat
 – LT district heating with electric cartridge: 637 DKK/MWh-heat

• Private economic
 – Individual heat pumps: 898 DKK/MWh-heat
 – Natural gas individual heating: 909 DKK/MWh-heat
 – 60 °C forward district heating: 793 DKK/MWh-heat
 – 40 °C forward district heating: 796 DKK/MWh-heat
Conclusions

• Socioeconomic
 – Individual heating preferable
 – Gains for large scale production to small to offset investment costs
 – Electric cartridge scenarios are better than heat pump scenarios for low temperature in this case

• Private economic
 – DH scenarios preferable
 – 60 °C DH cheaper than 40 °C DH
 – Removing the PSO tax makes the electric cartridge scenario cheaper than 60 °C district heating
Questions
Thank you for listening