CAES
Computer Architectures for Embedded Systems

Richard P. van Leeuwen
PhD CAES
(Computer Architectures for Embedded Systems)
University of Twente Enschede the Netherlands
Saxion University of Applied Sciences the Netherlands
Contents

- Introduction research group and general scope
- Introduction Project WIEfm
- Optimal district heating supply temperature case Meppel Nieuwveenselanden
- Optimal capacities: renewable generators and storage facilities
- Interesting advantages of district heating systems for integration of renewable energy
Focus of CAES energy group

Energy-autonomous smart micro-grids:
- Modeling and control of energy streams in micro-grids
- TRIANA control methodology for micro-grids based on
 - Prediction
 - Planning
 - Real-time control

Main applications:
- Planning and control of storage and flexibility in micro-grids
- Planning and control of energy streams in buildings
- Measurements and control of power quality in micro-grids

More: www.utwente.nl/energy
Focus of research chair renewable energy
Saxion University of Applied Sciences

1. Bio-based economy and energy from biofuels
2. Smart buildings and energy control
3. Urban energy and integration of renewable energy
smart, integrated energy infrastructure

Wind energy
bio-energy
solar-PV
renewable heat
local/regional renewable energy generation

local/regional energy consumption

Technical and legislative challenges

opportunities

Smart energy control

energy storage

energy system planning

simulation

business models

Large scale profitable

concepts

possibilities
WIEfm: modernizing heat supply in the Euregio
Kom verder. Saxion.

Wärme in der Euregio

WIE®m ist ein deutsch-niederländisches Projekt, das über das INTERREG-V-A-Kooperationsprogramm gefördert wird.

2nd International Conference on Smart Energy Systems and 4th Generation District Heating
27. September - 8:00 bis 28. September - 16:00

2. Expertenworkshop: Wärme aus erneuerbaren Energien
4. Oktober - 13:00 bis 18:00
Case: Smart Grid Meppel Energie
Optimal district heating supply temperature

Assumptions:

- 200 houses
- Existing network designed for 70°C
- Present supply temperature: 80°C
- Joined return: 20-35°C (average: 25°C)
- Specified pipe lengths, diameters and insulation thickness
- Flow calculation available at 70°C

→ Determine the optimal supply temperature
Approach optimal supply temperature

1. Investigate feasibility of decentral temperature boost \rightarrow negative
2. Investigate home heat exchanger transfer limitations

3. Develop models:
 - aggregated heat demand (time series)
 - pumping energy: $P_{\text{pump}}=f(\Phi_{\text{max}}, T_{\text{supply}})$
 - network heat loss: $Q=f(T_{\text{supply}})$

4. Determine optimal supply temperature as cost minimum
5. Develop legionella risk reduction measures

$T_{\text{supply, min}} = 55^\circ\text{C}$
Optimal supply temperature

- Apply costs: pumping electricity: €0,15/kWh, heat loss €0,03/kWh
- Energy costs: equivalent full load hours/year: $t_{\text{pump,max}}/8760$

- Practical range: 25-40% for equivalent full load hours
- Include marging of e.g. 5°C to guarantee supply furthest string

Conclusion: 60°C
Comments

- Practical experience: less pumping energy than expected → real optimum is at lower temperatures!

- Limitation Meppel case: $T < 55^\circ C$ causes problems for domestic hot water

- Dynamic flow and heat loss calculation to improve design of the district heating system

- Refer to papers by: Atli Benonysson, Henrik Madsen, Jan Hensen.

- Software for dynamic district heating simulation: Termis, Modelica, TRNSYS, Matlab Simulink
Urban energy generation capacities
Optimization principle

- Capacity Constraints
- Cost Optimization Model
- Output: Converter Capacities
- Energy Scheduling Model
- Supply Energy flows

Input: Demand & characteristics
Initial Constraints

More information: refer to upcoming paper related to this conference
Case study: Meppel with bio-fuel boiler & solar PV

- Reference: import (grey) electricity, condensing natural gas boiler per house, natural gas network
- Case:
 - Bio-fuel boiler with thermal storage
 - Supportive: external heat (natural gas boiler)
 - Large scale solar PV for household electric demand with electric storage
- Objective: maximize self consumption, minimize external heat
- Study influence of thermal and electric storage on objective and costs
Dashboard with optimal capacities

- 2.6 kWth per house
- 2.8 kWp per house
- 3 kWh per house
Results

Reference:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year Totals (kWh)</td>
<td>-576.449</td>
<td>-7.313</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>251.799</td>
<td>-1.692.617</td>
<td>-83.762</td>
<td>-1.692.617</td>
<td>-</td>
<td>-1.867.817</td>
<td>-</td>
</tr>
</tbody>
</table>

Self consumption of solar PV: 57%

Compared to reference: 82% CO2 reduction

Case:

<table>
<thead>
<tr>
<th></th>
<th>Generation-Demand</th>
<th>Import-Export</th>
<th>Storage Balance</th>
<th>Total Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity Balance</td>
<td>-534</td>
<td>234</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>Thermal Balance</td>
<td>586</td>
<td>-586</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Grid strengthening required

<table>
<thead>
<tr>
<th>grid peak</th>
<th>export</th>
<th>import</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>174</td>
</tr>
</tbody>
</table>
4 weeks January

Storage alone does not solve grid feed-in peaks
Stand alone Solutions to reduce peak grid feed-in: MPC (smart) charging, flexible device control
Advantage of a district heating network for integration

- Dissipate surplus electricity into district heating network
- Price incentive:
 - Grid feed-in maximum: €0,055/kWh
 - Balance power market: feed-in revenues can be negative!
 - Fuel price wood chips: €0,023/kWh
- Is there a business case?
 - Cheaper connection (uni-directional)
 - No investments in other smart solutions required
 - Less electrical storage
 - More renewable feed-in possible for existing main grid capacity
How does it work?

Peak surplus: 0-1200 kWh/day

Transformer Limit: 174 kW

each area < 1200 kWh

Production prediction

1200 kWh storage

Demand Prediction > 1800 kWh/day
What are the results?

Electricity:
- Household electric demand: -567 MWh
- Cooling electric demand: -8 MWh
- Solar PV production: 584 MWh
- Grid import: 252 MWh
- Grid export: -100 MWh

Grid peaks:
- Export: -174
- Import: 174 kW

Thermal:
- Heat grid demand: -1868 MWh
- Bio-mass boiler production: 1716 MWh
- Electric conversion: 152 MWh

Increased Self consumption from 57% to: 82%

Unstrengthened grid connection

Fuel savings: €3400/y
Case study conclusions

Optimal supply temperature of Meppel district heating system:
- Pumping energy: pipe diameters & flow
- Heat loss: pipe insulation properties
- Minimum costs: 60°C (≈ project limit)
- Opportunity: locally boost low (<55°C) supply temperatures
- Legionella risk prevention for domestic hot water

Optimal capacities of supply system:
- Model for Optimal capacities → generators, storage facilities
- Interaction between demand and renewable generation flows
- Measures to reduce electricity peaks and limit surplus feed-in

Advantage of district heating for system integration:
- Opportunities: direct power to heat to reduce electricity peaks
- Attractive cost savings possible: fuel, grid lay-out & connections
Thank you for your attention!

- More details on: www.utwente.nl/energy
 Electrical and thermal profile generators, PhD publications
 - Online Thesis version expected: may 2017
 - Future work, integrated tool:
 - Optimal capacities
 - Smart control of flexible devices
- Mail: r.p.vanleeuwen@saxion.nl