

By Gorm Bruun Andresen, Rasmus Pedersen from Department of Engineering, Aarhus University Aarhus, Denmark Adam Bruun from AffaldVarme Aarhus, Denmark

USER INCENTIVES FOR LOW-ENERGY RENOVATIONS IN DISTRICT HEATING SYSTEMS OF DIFFERENT SCALES

Driving questions

- How are the consumer incentives for low energy retrofit affected by:
 - The DH company size?
 - The fixed-variable cost ratio?

Investments and O&M costs
Variable fuel costs
Pipe network costs
Heat loss

DISTRICT HEATING COST MODEL

Heat production cost

http://transmissionsnet.varmeplanaarhusapps.dk/

- Fixed cost for the heat transmission network and production units are 302 million dkk/yr. The fixed cost are shared according to the total heat supplied to each area.
- Variable costs are calculated hour by hour. On average the cost is
 249 dkk/MWh.

Distribution network cost (DNC_i)

- Database of 65,000+ individual pipes
 - Length (L_i)
 - Diameter (d_i)
 - Location
- Database of 100,000+ buildings (BBR)
 - Building foot-print (a_{ii})
 - Land area (A_i)

Cost model

$$DNC_i = annuity \cdot (C_1 + C_2 \cdot d_i) \cdot L_i$$

Urban Persson and Sven Werner. Heat distribution and the future competitiveness of district heating. *Applied Energy*, 88(3):568–576, 2011.

Heat sales and Heat loss

- Database of 55,000+ individual consumer installations
 - 3 years of annual heat consumption (q_i) .
- Heat delivered to each of the 50+ districts
 - Hourly heat load (Q_i) .

Heat
$$loss_i = \frac{Q_i - q_i}{Q_i}$$

Accumulated heat sold [GWh/year]

The districts of Aarhus are representative for DH in Denmark

CONSUMER COST MODEL

Example of consumer cost in different areas

What is in it for me?

CONSUMER INCENTIVES

Current consumption

Consumer cost distribution

For **35,696 consumers**, we have highly detailed consumption and building data.

You cannot save more than your heat bill!

Consumer benefit of aggregation

Most consumers would benefit from localized cost models.

Retrofit to 50 kWh/m²/yr

Both localized and aggregated cost models provide similar incentives for low energy retrofit.

Conclusion

In Aarhus:

- The cost of heat varies from 400 to 1000 dkk/MWh.
 - Aggregation can ensure that socio-economical DH also becomes attractive for all consumers.
- Most consumers would benefit from a localized cost model.
- An aggregated cost model leads to slightly higher incentives for low energy retrofit.
- In absolute numbers the incentives are low, about 25 dkk/MWh/m².

